
Boža et al. Algorithms Mol Biol (2015) 10:18
DOI 10.1186/s13015-015-0052-6

RESEARCH

GAML: genome assembly by maximum
likelihood
Vladimír Boža, Broňa Brejová and Tomáš Vinař*

Abstract 

Background:  Resolution of repeats and scaffolding of shorter contigs are critical parts of genome assembly. Modern
assemblers usually perform such steps by heuristics, often tailored to a particular technology for producing paired or
long reads.

Results:  We propose a new framework that allows systematic combination of diverse sequencing datasets into a
single assembly. We achieve this by searching for an assembly with the maximum likelihood in a probabilistic model
capturing error rate, insert lengths, and other characteristics of the sequencing technology used to produce each
dataset. We have implemented a prototype genome assembler GAML that can use any combination of insert sizes
with Illumina or 454 reads, as well as PacBio reads. Our experiments show that we can assemble short genomes with
N50 sizes and error rates comparable to ALLPATHS-LG or Cerulean. While ALLPATHS-LG and Cerulean require each a
specific combination of datasets, GAML works on any combination.

Conclusions:  We have introduced a new probabilistic approach to genome assembly and demonstrated that this
approach can lead to superior results when used to combine diverse set of datasets from different sequencing tech-
nologies. Data and software is available at http://compbio.fmph.uniba.sk/gaml.

Keywords:  Genome assembly, Maximum likelihood, Simulated annealing, De Bruijn graphs,
Next generation sequencing

© 2015 Boža et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The second and third generation sequencing technologies
have dramatically decreased the cost of sequencing. Now-
adays, we have a surprising variety of sequencing tech-
nologies, each with its own strengths and weaknesses.
For example, Illumina platforms are characteristic by low
cost and high accuracy, but the reads are short. On the
other hand, Pacific Biosciences offer long reads at the
cost of quality and coverage. In the meantime, the cost
of sequencing was brought down to the point, where it is
no longer a sole domain of large sequencing centers; even
small labs can experiment with cost-effective genome
sequencing. As a result, it is not realistic to assume an
existence of a single standard protocol for sequencing
genomes of a particular size. In this paper, we propose
a framework for genome assembly that allows flexible

combination of datasets from different technologies in
order to harness their individual strengths.

Modern genome assemblers are usually based either
on the overlap–layout–consensus framework (e.g. Cel-
era [1], SGA [2]), or on de Bruijn graphs (e.g. Velvet [3],
ALLPATHS-LG [4]). Both approaches can be seen as
special cases of a string graph [5], in which we repre-
sent sequence fragments as vertices, while edges repre-
sent possible adjacencies of fragments in the assembly.
A genome assembly is simply a set of walks through this
graph. The main difference between the two frameworks
is how we arrive at a string graph: through detecting long
overlaps of reads (overlap–layout–consensus) or through
construction of de Bruijn graphs based on k-mers.

However, neither of these frameworks is designed to
systematically handle pair-end reads and additional heu-
ristic steps are necessary to build larger scaffolds from
assembled contigs. For example, ALLPATHS-LG [4]
uses libraries with different insert lengths for scaffold-
ing contigs assembled without the use of paired read

Open Access

*Correspondence: vinar@fmph.uniba.sk
Faculty of Mathematics, Physics, and Informatics, Comenius University,
Mlynská dolina, 842 48 Bratislava, Slovakia

http://compbio.fmph.uniba.sk/gaml
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-015-0052-6&domain=pdf

Page 2 of 10Boža et al. Algorithms Mol Biol (2015) 10:18

information, while Cerulean [6] uses Pacific Biosystems
long reads for the same purpose. Recently, the techniques
of paired de Bruijn graphs [7] and pathset graphs [8] were
developed to address paired reads systematically, how-
ever these approaches cannot combine libraries with dif-
ferent insert sizes.

Combination of sequencing technologies with com-
plementary strengths can help to improve assembly
quality. However, it is not feasible to design new algo-
rithms for every possible combination of datasets.
Often it is possible to supplement previously developed
tools with additional heuristics for new types of data.
For example, PBJelly [9] uses Pacific Biosystems reads
solely to aid gap filling in draft assemblies. Assemblers
like PacbioToCa [10] or Cerulean [6] use short reads to
improve the quality of Pacific Biosystems reads so that
they can be used within traditional assemblers. How-
ever, such approaches do not use all information con-
tained within the datasets.

We propose a new framework that allows systematic
combination of diverse datasets into a single assembly,
without requiring a particular type of data for specific
heuristic steps. Recently, probabilistic models have been
used very successfully to evaluate the quality of genome
assemblers [11–13]. In our work, we use likelihood of a
genome assembly as an optimization criterion, with the
goal of finding the assembly with the highest likelihood.
Even though this may not be always feasible, we demon-
strate that optimization based on simulated annealing
can be very successful at finding high likelihood genome
assemblies.

To evaluate the likelihood, we adapted a model by
Ghodsi et al. [13], which can capture characteristics of
each dataset, such as sequencing error rate, as well as
length distribution and expected orientation of paired
reads (“Probabilistic model for sequence assembly”). We
can thus transparently combine information from multi-
ple diverse datasets into a single score. Previously, there
have been several works in this direction in much simpler
models without sequencing errors [14, 15]. These papers
used likelihood to estimate repeat counts, without con-
sidering other problems, such as how exactly are repeats
integrated within scaffolds.

To test our framework, we have implemented a proto-
type genome assembler genome assembly by maximum
likelihood (GAML) that can use any combination of
insert sizes with Illumina or 454 reads, as well as PacBio
reads. The starting point of the assembly are short con-
tigs derived from Velvet [3] with very conservative set-
tings in order to avoid assembly errors. We then use
simulated annealing to combine these short contigs into
high likelihood assemblies (“Finding a high likelihood

assembly”). We compare our assembler to existing tools
on benchmark datasets (“Experimental evaluation”),
demonstrating that we can assemble genomes of up to
10 MB long with N50 sizes and error rates comparable
to ALLPATHS-LG or Cerulean. For larger genomes, we
can start from an assembly given by a different tool and
improve on the result. While ALLPATHS-LG and Ceru-
lean each require a very specific combination of datasets,
GAML works on any combination.

Probabilistic model for sequence assembly
Recently, several probabilistic models were introduced as
a measure of the assembly quality [11–13]. All of these
authors have shown that the likelihood consistently
favours higher quality assemblies. In general, the proba-
bilistic model defines the probability Pr(R|A) that a set of
sequencing reads R is observed assuming that assembly A
is the correct assembly of the genome. Since the sequenc-
ing itself is a stochastic process, it is very natural to char-
acterize concordance of reads and an assembly by giving
a probability of observing a particular read. In our work,
instead of evaluating the quality of a single assembly, we
use the likelihood as an optimization criterion with the
goal of finding high likelihood genome assemblies. We
adapt the model of Ghodsi et al. [13], which we describe
in this section.

Basics of the likelihood model
The model assumes that individual reads are indepen-
dently sampled, and thus the overall likelihood is the prod-
uct of likelihoods of the reads: Pr(R|A) =

∏
r∈R Pr(r|A).

To make the resulting value independent of the number
of reads in set R, we use as the main assembly score the
log average probability of a read computed as follows:
LAP(A|R) = (1/|R|)

∑
r∈R log Pr(r|A). Note that maxi-

mizing Pr(R|A) is equivalent to maximizing LAP(A|R).
If the reads were error-free and each position in the

genome was sequenced equally likely, the probability of
observing read r would simply be Pr(r|A) = nr/(2L),
where nr is the number of occurrences of the read as a
substring of the assembly A, L is the length of A, and thus
2L is the length of the two strands combined [14]. Ghodsi
et al. [13] have shown a dynamic programming com-
putation of read probability for more complex models,
accounting for sequencing errors. The algorithm margin-
alizes over all possible alignments of r and A, weighting
each by the probability that a certain number of substitu-
tion and indel errors would happen during sequencing.
In particular, the probability of a single alignment with m
matching positions and s errors (substitutions and indels)
is defined as R(s,m)/(2L), where R(s,m) = ǫs(1− ǫ)m
and ǫ is the sequencing error rate.

Page 3 of 10Boža et al. Algorithms Mol Biol (2015) 10:18

However, the full dynamic programming is too time
consuming, and in practice only several best alignments
contribute significantly to the overall probability. We
approximate the probability of observing read r with an
estimate based on a set Sr of a few best alignments of r to
genome A, as obtained by one of the standard fast read
alignment tools:

where mj is the number of matches in the jth alignment,
and sj is the number of mismatches and indels implied
by this alignment. The formula assumes the simplest
possible error model, where insertions, deletions, and
substitutions have the same probability, and ignores GC
content bias. Of course, much more comprehensive read
models are possible (see e.g. [12]).

Paired reads
Many technologies provide paired reads produced from
the opposite ends of a sequence insert of a certain size.
We assume that the insert size distribution in a set of
reads R can be modeled by the normal distribution with
known mean μ and standard deviation σ. The probability
of observing paired reads r1 and r2 can be estimated from
the sets of alignments Sr1 and Sr2 as follows:

As before, mji and sji are the numbers of matches and
sequencing errors in alignment ji respectively, and d(j1, j2)
is the distance between the two alignments as observed
in the assembly. If alignments j1 and j2 are in two differ-
ent contigs, or on inconsistent strands, Pr(d(j1, j2)|µ, σ)
is zero.

Reads that have no good alignment to A
Some reads or read pairs do not align well to A, and as a
result, their probability Pr(r|A) is very low; our approxi-
mation by a set of high-scoring alignments can even
yield zero probability if set Sr is empty. Such extremely
low probabilities then dominate the log likelihood score.
Ghodsi et al. [13] propose a method that assigns such a
read a score approximating the situation when the read
would be added as a new contig to the assembly. We
modify their formulas for variable read length, and use
score ec+kℓ for a single read of length ℓ or ec+k(ℓ1+ℓ2) for a
pair of reads of lengths ℓ1 and ℓ2. Values k and c are scal-
ing constants set similarly as by Ghodsi et al. [13]. These
alternative scores are used instead of the read probability
Pr(r|A) whenever the probability is lower than the score.

(1)Pr(r|A) ≈

∑
j∈Sr

R(sj ,mj)

2L
,

(2)

Pr(r1, r2|A) ≈
1

2L

∑

j1∈Sr1

∑

j2∈Sr2

R(sj1 ,mj1)R(sj2 ,mj2)

× Pr(d(j1, j2)|µ, σ)

Multiple read sets
Our work is specifically targeted at a scenario, where we
have multiple read sets obtained from different librar-
ies with different insert lengths or even with differ-
ent sequencing technologies. We use different model
parameters for each set and compute the final score as
a weighted combination of log average probabilities for
individual read sets R1, . . . ,Rk:

In our experiments, we use weight wi = 1 for most data-
sets, but we lower the weight for Pacific Biosciences
reads, because otherwise they dominate the likeli-
hood value due to their longer length. The user can also
increase or decrease weights wi of individual sets based
on their reliability.

Penalizing spuriously joined contigs
The model described above does not penalize obvious
misassemblies when two contigs are joined together
without any evidence in the reads. We have observed that
to make the likelihood function applicable as an optimi-
zation criterion for the best assembly, we need to intro-
duce a penalty for such spurious connections. We say
that a particular base j in the assembly is connected with
respect to read set R if there is a read which covers base
j and starts at least k bases before j, where k is a constant
specific to the read set. In this setting, we treat a pair of
reads as one long read. If the assembly contains d discon-
nected bases with respect to d, penalty αd is added to the
LAP(A|R) score (α is a scaling constant).

Properties of different sequencing technologies
Our model can be applied to different sequencing tech-
nologies by appropriate settings of model parameters. For
example, Illumina technology typically produces reads
of length 75–150 bp with error rate below 1% [16]. For
smaller genomes, we often have a high coverage of Illu-
mina reads. Using paired reads or mate pair technologies,
it is possible to prepare libraries with different insert sizes
ranging up to tens of kilobases, which are instrumental in
resolving longer repeats [4]. To align these reads to pro-
posed assemblies, we use Bowtie2 [17]. Similarly, we can
process reads by the Roche 454 technology, which are
characteristic by higher read lengths (hundreds of bases).

Pacific Biosciences technology produces single reads of
variable length, with median length reaching several kilo-
bases, but the error rate exceeds 10% [6, 16]. Their length
makes them ideal for resolving ambiguities in assemblies,
but the high error rate makes their use challenging. To
align these reads, we use BLASR [18]. When we calcu-
late the probability Pr(r|A), we consider not only the best

(3)

LAP(A|R1, . . . ,Rk)

= w1LAP(A|R1)+ · · · + wkLAP(A|Rk).

Page 4 of 10Boža et al. Algorithms Mol Biol (2015) 10:18

alignments found by BLASR, but for each BLASR align-
ment, we also add probabilities of similar alignments in
its neighborhood. More specifically, we run a banded
version of the forward algorithm by [13], considering all
alignments in a band of size three around a guide align-
ment produced by BLASR.

Finding a high likelihood assembly
Complex probabilistic models, like the one described in
“Probabilistic model for sequence assembly”, were previ-
ously used to compare the quality of several assemblies
[11–13]. In our work, we instead attempt to find the high-
est likelihood assembly directly. Of course, the search
space is huge, and the objective function too complex
to admit exact methods. Here, we describe an effective
optimization routine based on the simulated annealing
framework [19].

Our algorithm for finding the maximum likelihood
assembly consists of three main steps: preprocessing,
optimization, and postprocessing. In preprocessing, we
decrease the scale of the problem by creating an assem-
bly graph, where vertices correspond to contigs and
edges correspond to possible adjacencies between con-
tigs supported by reads. In order to make the search
viable, we will restrict our search to assemblies that can
be represented as a set of walks in this graph. Therefore,
the assembly graph should be built in a conservative
way, where the goal is not to produce long contigs, but
rather to avoid errors inside them. In the optimization
step, we start with an initial assembly (a set of walks in
the assembly graph), and iteratively propose changes in
order to optimize the assembly likelihood. Finally, post-
processing examines the resulting walks and splits some
of them into shorter contigs if there are multiple equally
likely possibilities of resolving ambiguities. This happens,
for example, when the genome contains long repeats that
cannot be resolved by any of the datasets. In the rest of
this section, we discuss individual steps in more detail.

Optimization by simulated annealing
To find a high likelihood assembly, we use an iterative
simulated annealing scheme. We start from an initial
assembly A0 in the assembly graph. In each iteration,
we randomly choose a move that proposes a new assem-
bly A′ similar to the current assembly A. The next step
depends on the likelihoods of the two assemblies A and
A′ as follows:

•  • If LAP(A′|R) ≥ LAP(A|R), the new assembly A′ is
accepted and the algorithm continues with the new
assembly.

•  • If LAP(A′|R) < LAP(A|R), the new assembly A′ is
accepted with probability e(LAP(A

′|R)−LAP(A|R))/T ;

otherwise A′ is rejected and the algorithm retains the
old assembly A for the next step.

Here, parameter T is called the temperature, and it
changes over time. In general, the higher the tempera-
ture, the more aggressive moves are permitted. We use
a simple cooling schedule, where T = T0/ ln(i) in the
ith iteration. The computation ends when there is no
improvement in the likelihood for a certain number of
iterations. We select the assembly with the highest LAP
score as the result.

To further reduce the complexity of the assembly prob-
lem, we classify all contigs as either long (more than
500 bp) or short and concentrate on ordering the long
contigs correctly. The short contigs are used to fill the
gaps between the long contigs. Recall that each assem-
bly is a set of walks in the assembly graph. A contig can
appear in more than one walk or can be present in a sin-
gle walk multiple times.

Proposals of new assemblies are created from the cur-
rent assembly using the following moves:

•  • Walk extension (Figure 1a) We start from one end
of an existing walk and randomly walk through the
graph, in every step uniformly choosing one of the
edges outgoing from the current node. Each time we
encounter the end of another walk, the two walks
are considered for joining. We randomly (uniformly)
decide whether we join the walks, end the current
walk without joining, or continue walking.

•  • Local improvement (Figure 1b) We optimize the part
of some walk connecting two long contigs s and t.
We first sample multiple random walks starting from
contig s. In each walk, we only consider nodes from
which contig t is reachable. Then we evaluate these
random walks and choose the one that increases the
likelihood the most. If the gap between contigs s and
t is too big, we instead use a greedy strategy where
in each step we explore multiple random extensions
of the walk of length around 200 bp and pick the one
with the highest score.

•  • Repeat optimization We optimize the copy number
of short tandem repeats. We do this by removing or
adding a loop to some walk. We precompute the list
of all short loops (up to five nodes) in the graph and
use it for adding loops.

•  • Joining with advice We join two walks that are
spanned by long reads or paired reads with long
inserts. We first select a starting walk, align all reads
to this walk and randomly choose a read which has
the other end outside the walk. Then we find to
which node this other end belongs to and join appro-
priate walks. If possible, we fill the gap between the

Page 5 of 10Boža et al. Algorithms Mol Biol (2015) 10:18

two walks using the same procedure as in the local
improvement move. Otherwise we introduce a gap
filled with Ns.

•  • Disconnecting We remove a path through short con-
tigs connecting two long contigs in the same walk,
resulting in two shorter walks.

•  • Repeat interchange (Figure 1c) If a long contig has
several incoming and outgoing walks, we optimize
the pairing of incoming and outgoing edges. In par-
ticular, we evaluate all moves that exchange parts
of two walks through this contig. If one of these
changes improves the score, we accept it and repeat
this step, until the score cannot be improved at this
contig.

At the beginning of each annealing step, the type of the
move is chosen randomly; each type of move has its own
probability. We also choose randomly the contig at which
we attempt to apply the move.

Note that some moves (e.g. local improvement)
are very general, while other moves (e.g. joining with
advice) are targeted at specific types of data. This does
not contradict a general nature of our framework; it is
possible to add new moves as new types of data emerge,
leading to improvement when using specific datasets,
while not affecting the performance when such data is
unavailable.

Preprocessing and the initial assembly
To obtain the assembly graph, we use Velvet with basic
error correction and unambiguous concatenation of
k-mers. These settings will produce very short contigs,
but will also give a much lower error rate than a regular
Velvet run. GAML with the default settings then uses
each long contig as a separate walk in the starting assem-
bly for the simulated annealing procedure.

Postprocessing
The assembly obtained by the simulated annealing pro-
cedure may contain walks with no evidence for a particu-
lar configuration of incoming and outgoing edges in the
assembly graph. This happens for example if a repeat is
longer than the span of the longest paired read. In this
case, there would be several versions of the assembly
with the same or very similar likelihood score. In the
postprocessing step, we therefore apply the repeat inter-
change move at every possible location of the assembly.
If the likelihood change resulting from such a move is
negligible, we break the corresponding walks into shorter
contigs to avoid assembly errors.

Fast likelihood evaluation
The most time consuming step in our algorithm is evalu-
ation of the assembly likelihood, which we perform in
each iteration of simulated annealing. This step involves
alignment of a large number of reads to the current
assembly. However, only a small part of the assembly
is changed in each annealing step, which we can use to
significantly reduce the running time. Next, we describe
three optimizations implemented in our software.

Limiting read alignment to affected regions of the assem-
bly Since only a small portion of the assembly is affected
in each step, we can keep most alignments from the pre-
vious iterations and only align reads to the regions that
changed. To determine these regions, we split walks into
overlapping windows, each window containing several
adjacent contigs of a walk. Windows should be as short as
possible, but adjacent windows should overlap by at least
2ℓr bases, where ℓr is the length of the longest read. As a
result, each alignment is completely contained in at least
one window even in the presence of extensive indels.

We determine the window boundaries by a simple
greedy strategy, which starts at the first contig of a walk,

(a) (b) (c)
Figure 1  Examples of proposal moves. a Walk extension joining two walks. b Local improvement by addition of a new loop. c Repeat interchange.

Page 6 of 10Boža et al. Algorithms Mol Biol (2015) 10:18

and then extends the window by at least 2ℓr bases beyond
the boundary of the first contig. The next window always
starts at the latest possible location that ensures a suffi-
cient overlap and extends at least 2ℓr bases beyond the
end of the previous window.

For each window, we keep the position and edit dis-
tance of all alignments. In each annealing step, we iden-
tify which windows of the assembly were changed since
the last iteration. We then glue together overlapping win-
dows and align reads against these sequences.

We further improve this heuristics by avoiding
repeated alignments of reads to interiors of long contigs,
because these parts of the assembly never change. In par-
ticular, if some window starts with a long contig, we only
realign reads to the last 2ℓr bases from that contig, and
similarly we use only the first 2ℓr bases from a long contig
at the end of a window.

Reducing the number of reads which need to be aligned
The first improvement eliminates most of the assembly
from read mapping. In contrast, the second improve-
ment reduces the set of reads which need to be realigned,
because most of the reads will not align to the changed
part of the assembly. We use a prefiltering step to find the
reads which are likely to align to the target sequence. In
the current implementation, we use the following three
options for such filtering.

In the simplest approach, we look for reads which
contain some k-mer (usually k = 13) from the target
sequence. We store an index of all k-mers from all reads
in a hash map. In each annealing step, we iterate over all
k-mers in the target portion of the assembly and retrieve
reads that contain them. This approach is very memory
consuming, because the identifier of each read is stored
for each k-mer from this read.

In the second approach, we save memory using min-
hashing [20]. Given hash function h, the min-hash of
set A is defined as m(A) = minx∈A h(x). For each read R,
we calculate min-hash for the set of all its k-mers. Thus,
the identifier of each read is stored in the hash table only
once. In each annealing step, we calculate the min-hash
for each substring of the target sequence of length ℓr and
retrieve the reads that have the same min-hash.

An important property of min-hashing is that
Pr(m(A) = m(B)) = J (A,B), where J (A,B) = |A∩B|

|A∪B| is the
Jaccard similarity of two sets A and B [21]. The statement
holds if the hash function h is randomly chosen from a
family with the min-wise independence property, which
means that for every subset of elements X, each element
in X has the same chance to have the minimum hash.

Note that strings with a very small edit distance have
a high Jaccard similarity between their k-mer sets, and
therefore a high chance that they will hash to the same
value using min-hashing. We can use several min-hashes

with different hash functions to improve the sensitivity of
our filtering at the cost of additional memory.

In our implementation, we use a simple hash func-
tion which maps k-mers into 32-bit integers. We first
represent the k-mer as an integer (where each base cor-
responds to two bits). We then xor this integer with a
random number. Finally, we perform mixing similar to
the finalization of the Murmur hash function [22]:

We choose this finalizer because the Murmur hash
function is fast and results in few collisions. It is not min-
hash independent, but we found it to perform well in
practice.

To illustrate the specificity and sensitivity of min-hash-
ing, we have compared our min-hashing approach with
indexing all k-mers (with k = 15) on evaluating LAP of
the Allpaths-LG assembly of Staphylococus aureus (using
read set SA1 described in “Experimental evaluation” and
aligning it to the whole S. aureus genome). Indexing all
k-mers resulted in 3,659,273 alignments found by exam-
ining 21,241,474 candidate positions. Using min-hashing
with three hash functions, we were able to find 3,639,625
alignments by examining 3,905,595 candidates positions.
Since these reads have a low error rate, k-mer indexing
retrieves practically all relevant alignments, while the
sensitivity of min-hashing is approximately 99.5%. In
min-hashing, 93% of examined positions yield an align-
ment, whereas specificity of k-mer indexing is only 17%.
Also min-hashing used 30 times smaller index.

Note that min-hashing was previously used in a simi-
lar context by Berlin et al. [23] to find similarities among
PacBio reads. However, since PacBio reads have a high
error rate, the authors had to use a high number of hash
functions, whereas we use only a few hash functions to
filter Illumina reads, which have a low error rate.

In GAML, we filter PacBio reads by a completely differ-
ent approach, which is based on alignments, rather than
k-mers. In particular, we take all reasonably long contigs
(at least 100 bases) and align them to PacBio reads. Since
BLASR can find alignments where a contig and a read
overlap by only around 100 bases, we use these align-
ments as a filter.

Final computation of the likelihood score When all reads
are properly aligned to the new version of the assembly,
we can combine the alignments to the final score. In the
implementation, we need to handle several issues, such

h ^= h >> 16;

h *= 0h85ebca6b;

h ^= h >> 13;

h *= 0hc2b2ae35;

h ^= h >> 16;

Page 7 of 10Boža et al. Algorithms Mol Biol (2015) 10:18

as correctly computing likelihood for reads that align to
multiple walks, assigning a special likelihood to reads
without any good alignment, and avoiding double count-
ing for reads that align to regions covered by two overlap-
ping windows of the same walk.

Again we improve the running time by considering only
reads that were influenced by the most recent change.
Between consecutive iterations, we keep all alignments
for each sequence window of the assembly and recom-
pute only alignments to affected windows, as outlined
above. We also keep the likelihood value of each read or
a read pair. Recall that the likelihood of a read or a read
pair is the sum of likelihoods of individual alignments.

In each iteration, we then identify which walks were
removed and added. Then we calculate likelihoods of all
read alignments in these walks (using stored or newly
computed alignments) and we use these values to adjust
the likelihood values of individual reads, subtracting for
removed walks and adding for new walks. At this step, we
also handle paired reads, identifying pairs of alignments
in correct distance and orientation. Finally, we sum likeli-
hoods of all reads in each dataset and compute the total
likelihood score.

Experimental evaluation
We have implemented the algorithm proposed in the
previous section in a prototype assembler GAML. At
this stage, GAML can assemble small genomes (approx.
10 Mbp) in a reasonable amount of time (approximately 4
h on a single CPU and using 10GB of memory).

To evaluate the quality of our assembler, we have
adopted the methodology used for Genome Assembly
Gold-Standard Evaluation [24], using metrics on scaf-
folds. We have used the same genomes and libraries as
Salzber et al. [24] (the Staphylococus aureus genome
and the human chromosome 14) and Deshpande et al.
[6] (the Escherichia coli genome). The overview of the

datasets is shown in Table 1. An additional dataset EC3
(long insert, low coverage) was simulated using the ART
software [25].

We have evaluated GAML in the following scenarios:

1.	 combination of fragment and short insert Illumina
libraries (SA1, SA2),

2.	 combination of a fragment Illumina library and a
long-read high-error-rate Pacific Biosciences library
(EC1, EC2),

3.	 combination of a fragment Illumina library, a long-
read high-error-rate Pacific Biosciences library, and a
long jump Illumina library (EC1, EC2, EC3),

In each scenario, we use the short insert Illumina reads
(SA1 or EC1) in Velvet with conservative settings to build
the initial contigs and assembly graph. For the LAP score,
we give all Illumina datasets weight 1 and the PacBio data-
set weight 0.01. The results are summarized in Table 2.
Note that none of the assemblers considered here can effec-
tively run in all three of these scenarios, except for GAML.

In the first scenario, GAML performance ranks third
among zero-error assemblers in the N50 length. The
best N50 assembly is given by ALLPATHS-LG [4]. A
closer inspection of the assemblies indicates that GAML
missed several possible joins. One such miss was caused
by a 4.5 kbp repeat, while the longest insert size in this
dataset is 3.5 kbp. Even though in such cases it is some-
times possible to reconstruct the correct assembly thanks
to small differences in the repeated regions, the differ-
ence in likelihood between alternative repeat resolutions
may be very small. Another missed join was caused by a
sequence coverage gap penalized in our scoring function.
Perhaps in both of these cases the manually set constants
may have caused GAML to be overly conservative. Oth-
erwise, the GAML assembly is very similar to the one
given by ALLPATHS-LG.

Table 1  Properties of datasets used

ID References Technology Insert length (bp) Read length (bp) Coverage Error rate (%)

Staphylococus aureus (2.87 Mbp)

 SA1 [24] Illumina 180 101 90 3

 SA2 [24] Illumina 3,500 37 90 3

Escherichia coli (4.64 Mbp)

 EC1 [6] Illumina 300 151 400 0.75

 EC2 [6] PacBio 4,000 30 13

 EC3 Simulated Illumina 37,000 75 0.5 4

Human chromosome 14 (88.29 Mbp)

 H1 [24] Illumina 150 101 42 1

 H2 [24] Illumina 2,500 101 26 3

 H3 [24] Illumina 35,000 76 1.3 4.5

Page 8 of 10Boža et al. Algorithms Mol Biol (2015) 10:18

In the second scenario, Pacific Biosystems reads were
employed instead of jump libraries. These reads pose a
significant challenge due to their high error rate, but they
are very useful due to their long length. Assemblers such
as Cerulean [6] deploy special algorithms taylored to this
technology. GAML, even though not explicitly tuned to
handle Pacific Biosystems reads, builds an assembly with
N50 size and the number of scaffolds very similar to that
of Cerulean. In N50, both programs are outperformed
by PacbioToCA [10], however, this is again due to a few
very long repeats (approx. 5,000 bp) in the reference
genome which were not resolved by GAML or Cerulean.
(Cerulean also aims to be conservative in repeat resolu-
tion.) Note that in this case, simulated annealing failed
to give the highest likelihood assembly among those that
we examined, so perhaps our results can be improved by
tuning the likelihood optimization.

The third scenario shows that the assembly quality can
be hugely improved by including a long jump library,
even if the coverage is really small (we have used 0.5×
coverage in this experiment). This requires a flexible
genome assembler; in fact, only Celera [1] can process

this data, but GAML assembly is clearly superior. We
have attempted to run also ALLPATHS-LG, but the
program could not process this combination of librar-
ies. Compared to the previous scenario, GAML N50
size increased approximately sevenfold (or approx. four-
fold compared to the best N50 from the second scenario
assemblies).

Improving previously assembled genomes
For medium and large genomes, it would take GAML
too many iterations to arrive at a reasonable assembly
starting from the contigs produced by Velvet with con-
servative settings. However, it is still possible to scale up
GAML to larger genomes by using another assembler to
provide a more reasonable starting point.

To this end, we have to map such an input assembly to
the assembly graph. We first align the assembly contigs
to the Velvet contigs using NUCmer [26]. We keep only
alignments which cover entire Velvet contigs and have a
high sequence identity. If a single input contig is aligned
to several Velvet contigs, we connect these Velvet contigs
to a walk in the assembly graph. The missing portions

Table 2  Comparison of assembly accuracy in the first three scenarios

For all assemblies, N50 values are based on the actual genome size. All misjoins were considered as errors and error-corrected values of N50 and contig sizes were
obtained by breaking each contig at each error [24]. All assemblies except for GAML and conservative Velvet were obtained from [24] in the first experiment, and from
[6] in the second experiment.

Italic numbers in each column signify the best result.

* Velvet with conservative settings used to create the assembly graph in our method.

Assembler Number
of scaffolds

Longest
scaffold (kb)

Longest
scaffold corr. (kb)

N50 (kb) Err. N50 corr. (kb) LAP

Staphylococus aureus, read sets SA1, SA2

 GAML 28 1,191 1,191 514 0 514 −23.45

 Allpaths-LG 12 1,435 1,435 1,092 0 1,092 −25.02

 SOAPdenovo 99 518 518 332 0 332 −25.03

 Velvet 45 958 532 762 17 126 −25.34

 Bambus2 17 1,426 1,426 1,084 0 1,084 −25.73

 MSR-CA 17 2,411 1,343 2,414 3 1,022 −26.26

 ABySS 246 125 125 34 1 28 −29.43

 Cons. Velvet* 219 95 95 31 0 31 −30.82

 SGA 456 286 286 208 1 208 −31.80

Escherichia coli, read sets EC1, EC2

 PacbioToCA 55 1,533 1,533 957 0 957 −33.86

 GAML 29 1,283 1,283 653 0 653 −33.91

 Cerulean 21 1,991 1,991 694 0 694 −34.18

 AHA 54 477 477 213 5 194 −34.52

 Cons. Velvet* 383 80 80 21 0 21 −36.02

Escherichia coli, read sets EC1, EC2, EC3

 GAML 4 4,662 4,661 4,662 3 4,661 −60.38

 Celera 19 4,635 2,085 4,635 19 2,085 −61.47

 Cons. Velvet* 383 80 80 21 0 21 −72.03

Page 9 of 10Boža et al. Algorithms Mol Biol (2015) 10:18

of the walk are found by dynamic programming so as to
minimize the edit distance between the input contig and
the walk. In the dynamic programming, we consider only
edit distance of up to 10, and if we do not find a connec-
tion within this threshold, we add a corresponding num-
ber of Ns to our walk.

If the input assembly differs too much from the Velvet
contigs, a good mapping of the contigs to walks in the
Velvet assembly graph cannot be found. In such cases,
we construct the assembly graph directly from the input
assembly. We first build a deBruijn graph from the con-
tigs, and then we concatenate nodes connected by unam-
biguous connections.

We can now use GAML to improve medium-size
genome assemblies (approx. 100 Mbp). In this setting,
10,000 iterations require approximately 2 days time and
50GB of memory.

We have tested this approach by using Illumina reads
with three different insert sizes (H1, H2, H3) on the
human chromosome 14 (data from [24]; see Table 1). We
use the non-conservative Velvet assembly and the ALL-
PATHS assembly as our starting point. The results are
shown in Table 3.

Starting from the Velvet assembly, GAML makes 787
breaks and 234 joins, reducing the error count by more
than a thousand. Our joins did not introduce any new
errors to the assembly. The ALLPATHS assembly has
a much higher quality, and starting from this assembly,
GAML decreases the number of errors only by one at the
cost of introducing ten breaks. In both cases, we were
able to remove some assembly errors, while not decreas-
ing the error-corrected N50 values. Perhaps more cor-
rections could be found if we ran our algorithm for more
iterations (especially in the Velvet case).

Since breaks predominate in the changes made by
GAML, we have also compared our results to REAPR
[27], which is a tool that aligns reads to an existing

assembly and then splits contigs at the positions weakly
supported or even in conflict with the reads. When it
concludes that some place is not a breakpoint, but
should instead contain an insertion, it inserts a sequence
of Ns. Note that REAPR can only process one jumping
library along with an optional fragment library, and it
requires the library to have a reasonable coverage (15×).
Due to these constraints, we have used REAPR only
with short jump library H2. For the Velvet assembly,
REAPR removes significantly more errors than GAML,
but at the cost of a great increase in the number of con-
tigs and a decrease in the error-corrected N50 value.
REAPR also introduces many cuts in the ALLPATHS
assembly and the GAGE error checking tools report a
high increase in errors. We hypothesize that this due
to REAPR adding many regions of Ns in the corrected
assembly, which leads to a high number of small contigs
which GAGE checker cannot align correctly.

Conclusion
We have presented a new probabilistic approach to
genome assembly, maximizing likelihood in a model cap-
turing essential characteristics of individual sequencing
technologies. It can be used on any combination of read
datasets and can be easily adapted to other technolo-
gies arising in the future. We have also adapted our tool
to improve existing assemblies after converting a given
assembly to a set of walks.

Our work opens several avenues for future research.
First, we plan to further improve running time and mem-
ory and to allow the use of our tool on larger genomes.
Second, the simulated annealing procedure could be
improved by optimizing probabilities of individual moves
or devising new types of moves. Finally, it would be inter-
esting to explore even more detailed probabilistic mod-
els, featuring coverage biases and various sources of
experimental error.

Table 3  Improving existing assemblies of the human chromosome 14 by GAML

 In both experiments, we use read sets H1, H2, and H3 and compare the original assembly computed by another tool with the assembly found by GAML.

Assembler Number
of scaffolds

Longest
scaffold (kb)

Longest
scaffold corr. (kb)

N50 (kb) Err. N50 corr. (kb) LAP

Human chromosome 14, starting from Velvet assembly

 Before 1,081 4,628 263 1,190 9,156 27 −138.765779

 After 1,634 1,046 265 347 8,049 27 −138.632657

 REAPR 17,727 153 81 36 4,607 14 −162.869192

Human chromosome 14, starting from ALLPATHS assembly

 Before 129 81,640 14,918 81,640 34 7,652 −111.288806

 After 139 81,640 14,918 81,640 33 7,652 −111.287938

 REAPR 858 977 146 190 4,230 17 −168.024865

Page 10 of 10Boža et al. Algorithms Mol Biol (2015) 10:18

Authors’ contributions
TV and VB have conceived the study. All authors have participated in design
of algorithms and experiments. VB has implemented the software and con-
ducted the experiments. All authors participated in manuscript preparation.
All authors read and approved the final manuscript.

Acknowledgements
This research was funded by VEGA Grants 1/1085/12 (BB) and 1/0719/14 (TV).
The authors would like to thank Viraj Deshpande for sharing his research
data. An early version of this paper was published in WABI 2014 conference
proceedings.

Compliance with ethical guidelines

Competing interests
The authors declare that they have no competing interests.

Received: 8 April 2015 Accepted: 7 May 2015

References
	1.	 Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan

MJ et al (2000) A whole-genome assembly of Drosophila. Science
287(5461):2196–2204

	2.	 Simpson JT, Durbin R (2010) Efficient construction of an assembly string
graph using the FM-index. Bioinformatics 26(12):367–373

	3.	 Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome Res 18(5):821–829

	4.	 Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ et al
(2011) High-quality draft assemblies of mammalian genomes from mas-
sively parallel sequence data. Proc Nat Acad Sci 108(4):1513–1518

	5.	 Myers EW (2005) The fragment assembly string graph. Bioinformatics
21(suppl 2):79–85

	6.	 Deshpande V, Fung ED, Pham S, Bafna V (2013) Cerulean: a hybrid
assembly using high throughput short and long reads. In: Algorithms in
Bioinformatics (WABI). LNCS, vol 8126. Springer, Berlin, pp 349–363

	7.	 Medvedev P, Pham S, Chaisson M, Tesler G, Pevzner P (2011) Paired de
Bruijn graphs: a novel approach for incorporating mate pair information
into genome assemblers. J Comput Biol 18(11):1625–1634

	8.	 Pham SK, Antipov D, Sirotkin A, Tesler G, Pevzner PA, Alekseyev MA (2013)
Pathset graphs: a novel approach for comprehensive utilization of paired
reads in genome assembly. J Comput Biol 20(4):359–371

	9.	 English AC, Richards S, Han Y, Wang M, Vee V, Qu J et al (2012) Mind the
gap: upgrading genomes with Pacific Biosciences RS long-read sequenc-
ing technology. PLoS One 7(11):47768

	10.	 Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G et al
(2012) Hybrid error correction and de novo assembly of single-molecule
sequencing reads. Nat Biotechnol 30(7):693–700

	11.	 Rahman A, Pachter L (2013) CGAL: computing genome assembly likeli-
hoods. Genome Biol 14(1):8

	12.	 Clark SC, Egan R, Frazier PI, Wang Z (2013) ALE: a generic assembly likeli-
hood evaluation framework for assessing the accuracy of genome and
metagenome assemblies. Bioinformatics 29(4):435–443

	13.	 Ghodsi M, Hill CM, Astrovskaya I, Lin H, Sommer DD, Koren S et al (2013)
De novo likelihood-based measures for comparing genome assemblies.
BMC Res Notes 6(1):334

	14.	 Medvedev P, Brudno M (2009) Maximum likelihood genome assembly. J
Comput Biol 16(8):1101–1116

	15.	 Varma A, Ranade A, Aluru S (2011) An improved maximum likelihood
formulation for accurate genome assembly. In: Computational Advances
in Bio and Medical Sciences (ICCABS 2011). IEEE, pp 165–170

	16.	 Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR et al (2012)
A tale of three next generation sequencing platforms: comparison of Ion
Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom-
ics 13(1):341

	17.	 Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie
2. Nat Methods 9(4):357–359

	18.	 Chaisson MJ, Tesler G (2012) Mapping single molecule sequencing reads
using basic local alignment with successive refinement (BLASR): applica-
tion and theory. BMC Bioinform 13(1):238

	19.	 Eglese R (1990) Simulated annealing: a tool for operational research. Eur J
Oper Res 46(3):271–281

	20.	 Broder AZ (1997) On the resemblance and containment of documents.
In: Proceedings of the Compression and Complexity of Sequences 1997.
IEEE, pp 21–29

	21.	 Broder AZ, Charikar M, Frieze AM, Mitzenmacher M (2000) Min-wise
independent permutations. J Comput Syst Sci 60(3):630–659

	22.	 Appleby A (2008) MurmurHash. https://code.google.com/p/smhasher/
wiki/MurmurHash

	23.	 Berlin K, Koren S, Chin CS, Drake J, Landolin JM, Phillippy AM (2014)
Assembling large genomes with single-molecule sequencing and locality
sensitive hashing. bioRxiv, 008003

	24.	 Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S et al (2012)
GAGE: a critical evaluation of genome assemblies and assembly algo-
rithms. Genome Res 22(3):557–567

	25.	 Huang W, Li L, Myers JR, Marth GT (2012) ART: a next-generation
sequencing read simulator. Bioinformatics 28(4):593–594

	26.	 Delcher AL, Phillippy A, Carlton J, Salzberg SL (2002) Fast algorithms
for large-scale genome alignment and comparison. Nucleic Acids Res
30(11):2478–2483

	27.	 Hunt M, Kikuchi T, Sanders M, Newbold C, Berriman M, Otto TD (2013)
Reapr: a universal tool for genome assembly evaluation. Genome Biol
14(5):47

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

https://code.google.com/p/smhasher/wiki/MurmurHash
https://code.google.com/p/smhasher/wiki/MurmurHash
http://biorxiv.org/content/early/2014/08/14/008003

	GAML: genome assembly by maximum likelihood
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Probabilistic model for sequence assembly
	Basics of the likelihood model
	Paired reads
	Reads that have no good alignment to A
	Multiple read sets
	Penalizing spuriously joined contigs
	Properties of different sequencing technologies

	Finding a high likelihood assembly
	Optimization by simulated annealing
	Preprocessing and the initial assembly
	Postprocessing
	Fast likelihood evaluation

	Experimental evaluation
	Improving previously assembled genomes
	Conclusion
	Authors’ contributions
	Received: 8 April 2015 Accepted: 7 May 2015References

