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Abstract

Ion mobility (IM) spectrometry (IMS), coupled with multi-capillary columns (MCCs), has been gaining importance for
biotechnological and medical applications because of its ability to detect and quantify volatile organic compounds
(VOC) at low concentrations in the air or in exhaled breath at ambient pressure and temperature. Ongoing
miniaturization of spectrometers creates the need for reliable data analysis on-the-fly in small embedded low-power
devices. We present the first fully automated online peak extraction method for MCC/IMS measurements consisting of
several thousand individual spectra. Each individual spectrum is processed as it arrives, removing the need to store
the measurement before starting the analysis, as is currently the state of the art. Thus the analysis device can be an
inexpensive low-power system such as the Raspberry Pi.
The key idea is to extract one-dimensional peak models (with four parameters) from each spectrum and then merge
these into peak chains and finally two-dimensional peak models. We describe the different algorithmic steps in detail
and evaluate the online method against state-of-the-art peak extraction methods.

Keywords: Ion mobility spectrometry, Peak detection, Automated data analysis, Online analysis

Introduction
Ion mobility (IM) spectrometry (IMS), coupled with
multi-capillary columns (MCCs),MCC/IMS for short, has
been gaining importance for biotechnological andmedical
applications. With MCC/IMS, one can measure the pres-
ence and concentration of volatile organic compounds
(VOCs) in the air or in exhaled breath with high sensitiv-
ity. In contrast to other technologies, such as mass spec-
trometry coupled with gas chromatography (GC/MS),
MCC/IMS works at ambient pressure and temperature.
Several diseases like chronic obstructive pulmonary dis-
ease (COPD) [1], sarcoidosis [2] or lung cancer [3] can
potentially be diagnosed early withMCC/IMS technology.
IMS is also used for the detection of drugs [4] and explo-
sives [5]. Constant monitoring of VOC levels is of inter-
est in biotechnology, e.g., for watching fermenters with
yeast producing desired compounds [6] and in medicine,
e.g., monitoring propofol levels in the exhaled breath of
patients during surgery [7].
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IMS technology is moving towards miniaturization and
small mobile devices. This creates new challenges for
data analysis: The analysis should be possible within the
measuring device without requiring additional hardware
like an external laptop or a compute server. Ideally, the
spectra can be processed on a small embedded chip or
small device like a Raspberry Pi or similar hardware with
restricted resources. Algorithms in small mobile hard-
ware face constraints, such as the need to use little energy
(hence little random access memory), while maintaining
prescribed time constraints.
The basis of MCC/IMS analysis is peak extraction, by

which we mean a representation of all high-intensity
regions (peaks) in the measurement by using a few
descriptive parameters per peak instead of the full mea-
surement data. State-of-the-art software (like IPHEx [8],
Visual Now [9], PEAX [10]) only extracts peaks when
the whole measurement is available, which may take up
to 10 minutes because of the pre-separation of the ana-
lytes in the MCC. Our own PEAX software in fact defines
modular pipelines for fully automatic peak extraction and
compares favorably with a human domain expert doing
the same work manually when presented with a whole
MCC/IMS measurement. However, storing the whole
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measurement is not desirable or possible when the mem-
ory and CPU power is restricted. Here we introduce a
method to extract peaks and estimate a parametric repre-
sentation while the measurement is being captured. This
is called online peak extraction, and this article presents
the first algorithm for this purpose on MCC/IMS data.
An extended abstract of this work has been published at
WABI’14 [11].
Section ‘Background’ introduces the necessary back-

ground on the data produced by an MCC/IMS experi-
ment, on peak modeling and on optimization methods.
The basic idea of our algorithm is to process each IM spec-
trum as soon as it arrives (and before the next one arrives).
After appropriate pre-processing including denoising and
baseline correction described in Section ‘Denoising and
baseline correction’, the single spectra are reduced into
a mixture of parametric one-dimensional peak models,
described in Section ‘Reducing a spectrum to peak mod-
els’. Accordingly, in Section ‘Aligning consecutive spec-
trum peak lists’ the approach of connecting models from
two subsequent spectra into peak chains is explained.
The main challenge is then to merge the peak chains
into two-dimensional peak models, described in Section
‘Estimating 2-D peak models’. In Section ‘Peak clustering’
we introduce a novel approach for clustering peaks among
several measurements e.g. for time series. An evalua-
tion of our approach is presented in Section ‘Evaluation’
including a listing of all settings of the MCC/IMS as
well as an explanation of all adjustable parameters, while
Section ‘Discussion and conclusion’ contains a concluding
discussion.

Background
Ion mobility spectrometers and their functions are
well documented [12], and we do not go into tech-
nical details. Instead, we characterize the data gener-
ated by an MCC/IMS experiment (Section ‘Data from
MCC/IMS measurements’). In Section ‘Peak models’ we
describe a previously used parametric peak model, and in
Section ‘Optimization methods’ we review two optimiza-
tion methods that are being used as subroutines in this
work.

Data fromMCC/IMSmeasurements
In an MCC/IMS experiment, a mixture of several
unknown volatile organic compounds (VOCs) is sepa-
rated in two dimensions: first by retention time r in
the MCC (the time required for a particular compound
to pass through the MCC) and second by drift time d
through the IM spectrometer. Instead of the drift time
itself, a quantity normalized for pressure and tempera-
ture called the inverse reduced mobility (IRM) t is used to
compare spectra taken under different or changing con-
ditions. Thus we obtain a time series of IM spectra (one

spectrum each 100 ms at each retention time point), and
each spectrum is a vector of ion concentrations (measured
by voltage change on a Faraday plate) at each IRM.
Let R be the set of (equidistant) retention time points

and let T be the set of (equidistant) IRMs where a mea-
surement is made. If D is the corresponding set of drift
times (each 1/250000 second for 50 ms, that is 12 500 time
points), there exists a constant Ct|d > 0 depending on
external conditions [12] such that T = Ct|d · D. Then the
data is an |R| × |T | matrix S = (Sr,t) of measured ion
intensities, which we call an IM spectrum-chromatogram
(IMSC). The matrix can be visualized as a heat map
(Figure 1). A row of S is a spectrum, while a column of S is
a chromatogram.
Areas of high intensity in S are called peaks, and our

goal is to discover them and to describe them by paramet-
ric models. Comparing peak coordinates with reference
databases may reveal the identity of the corresponding
compound. A peak caused by a VOC occurs over several
IM spectra. We mention some properties of MCC/IMS
data that complicate the analysis.

• An IM spectrometer uses an ionized carrier gas.
These ions are present in every spectrum in addition
to the analyte ions, and they create the reactant ion
peak (RIP). In the whole IMSC it is present as
high-intensity chromatogram at a specific IRM
(Figure 1). When no analytes are injected into the
device, the spectra contain only the RIP and are
called RIP-only spectra.

• Every spectrum contains a tailing of the RIP, so the
RIP is right-skewed (Figure 2). To extract peaks, the
effect of the RIP and its tailing must be estimated and
removed.

• At higher concentrations, compounds can form
dimer ions, and one may observe both the monomer
and dimer peak from one compound. This means that
there is not necessarily a one-to-one correspondence
between peaks and compounds, and our work focuses
on peak detection, not compound identification.

• An IM spectrometer may operate in positive or
negative mode, depending on which type of ions
(positive or negative) one wants to detect. In either
case, signals are reported in positive units. All
experiments described here were done in positive
mode.

Peak models
For our purpose of analyzing MCC/IMS measurements, a
peak is characterized by the following assumptions.

Assumptions 1. An n-dimensional peak P is a prod-
uct of n log-concave functions with two inflection points in
each dimension. The peak width at half height ω1/2,i can be
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Figure 1 Visualization of a raw measurement (IMSC) as a heat map; signal color: white (lowest) < blue < purple < red < yellow (highest). The
constantly present reactant ion peak (RIP) with mode at 0.48 Vs/cm2 and exemplarily one VOC peak are annotated.

calculated with respect to the mode for each dimension i.
At its mode (m1, . . . ,mn), peak P exceeds the average back-
ground noise level by a certain factor times the standard
deviation of the noise.

For MCC/IMS measurements, we have n = 2 dimen-
sions, and in both retention time dimension and IRM
dimension, we use the shifted Inverse Gaussian distribu-
tion g [13] as peak model function:

g(x;μ, λ, o) := 1[ x > o]√
2π

·

·
√

λ

(x − o)3
· exp

(
−λ ((x − o) − μ)2

2μ2(x − o)

)
. (1)

Its parameters are the shift (or offset) o, the relative
mean μ > 0 (to the right of o) and the shape parame-
ter λ > 0. A peak is then given as the product of two
shifted Inverse Gaussians, scaled by a volume factor v, i.e.,
by seven parameters; so the density function of a peak is
p(r, t) := v·g(r,μr, λr, or)·g(t,μt, λt, ot) for all r ∈ R, t ∈ T .
Since the parameters μ, λ, o of a shifted Inverse Gaus-

sian may be different even though the resulting distribu-
tions have a similar shape, it is more intuitive to describe
the shifted Inverse Gaussian in terms of three differ-
ent descriptors: the (absolute) mean μ′ = o + μ, the
standard deviation σ and the mode m. There is a bijec-
tion between (μ, λ, o) and (μ′, σ ,m) [13] summarized in
Appendix A.

We also make use of the following empirically observ-
able properties of peaks in real IMSCs that concern the
peak widths on both the IRM axis and the retention time
axis. The width can be described as the length ω1/2 of
the interval around the mode where the peak height is at
least half of its maximum height. For a (symmetric) Gaus-
sian distribution, there is a linear relation between the
standard deviation σ and ω1/2:

ω1/2 = φ · σ with φ = 2
√
2 ln 2 ≈ 2.3548 . (2)

This relation approximately holds as well for not too
skewed Inverse Gaussian distributions and is a good
approximation to estimate its descriptor σ approximately
from an empirically observed ω1/2.
Given the mode d∗ of a peak in drift time (in ms),

we can estimate its descriptors (m, σ ,μ′) in IRM units
as follows. Recall that the IRM mode (in V s cm−2)
is simply m = Ct|d · d∗, where Ct|d is the conver-
sion constant between drift time and IRM (see Section
‘Data fromMCC/IMSmeasurements’). Spangler et al. [14]
empirically derived that ω1/2 =

√
(11.09D d∗)/v2d + d2grid,

where D is the diffusion coefficient, vd the drift velocity.
Using the Einstein relation [15], D can be computed as
D = kKBT /q, where k is the ion mobility, KB the Boltz-
mann constant, T the absolute temperature and q the
electric charge. We then use (2) to estimate σ ≈ ω1/2/φ.
Finally, the mean is empirically found to be μ′ ≈ Ct|d ·(
d∗ + √

(4.246 · 10−5)2 + (d∗)2/585048.1633
)
.

Figure 2 A spectrum and its estimated tailing function.
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On the retention time axis, the peak width ω1/2

grows approximately linearly with retention time, i.e.,
there are constants r_width_offset > 0 and
r_width_factor > 0 such that width of a peak with
maximum at retention time r is approximately

ξ(r) := r ·r_width_factor+r_width_offset .
(3)

Optimization methods
The online peak extraction algorithm makes use of non-
linear unconstrained minimization, similar to non-linear
least squares, and of the EM algorithm. Both methods are
summarized here.

Non-linear Least Squares
The NLLS method is an iterative method to estimate
parameters θ = (θ1, . . . , θq) of a supposed paramet-
ric function f , given n observed data points (x1, y1), . . . ,
(xn, yn) with yi = f (xi; θ). The idea is to minimize the
quadratic error

∑n
i=1 r2i (θ) between the function and the

observed data, where ri(θ) := yi − f (xi; θ) is the residual
of the i-the datapoint. The necessary optimality condition
is

∑
i ri(θ) · ∂ri(θ)/∂θj = 0 for all j. If f is linear in θ

(e.g., a polynomial in x with θ being the polynomial coef-
ficients, a setting called polynomial regression), then the
optimality condition results in a linear system, which can
be solved in closed form. However, often f is not linear
in θ and we obtain a non-linear system, which is solved
iteratively, given initial parameter values, by linearizing
it in each iteration. Details and different algorithms for
NLLS can be found in the literature ([16], Chapter 10). In
this paper, we use a different, non-symmetric loss func-
tion, but apply similar techniques to solve the problem
(see below).

The EM algorithm formixtures with heterogeneous
components
The observed data x = (x1, . . . , xn) is viewed as
a sample from a mixture of probability distributions,
where the mixture density is specified by f (xi | ω, θ) =∑C

c=1 ωc fc(xi | θc). Here c indexes the C different com-
ponent distributions fc, where θc denotes the parameters
of fc, and θ = (θ1, . . . , θC) is the collection of all parame-
ters. The mixture coefficients satisfy ωc ≥ 0 for all c, and∑

c ωc = 1. Unlike in most applications, where all com-
ponent distributions fc are multivariate Gaussians, here
the fc are of different types (e.g., uniform and Inverse
Gaussian). The goal is to determine the parameters ω and
θ such that the probability of the observed sample is max-
imal (maximum likelihood paradigm). Since the resulting
optimization problem is non-convex in (ω, θ), the EM
algorithm is an iterative method that will converge to a
local optimum [17] in parameter space. The EM algorithm

consists of two repeated steps: The E-step (expectation)
estimates the expected membership of each data point
in each component and then the component weights ω,
given the current model parameters θ . The M-step (max-
imization) estimates maximum likelihood parameters θc
for each parametric component fc individually, using the
expected memberships as hidden variables that decouple
the model.

E-Step. To estimate the expected membership Wi,c of
data point xi in each component c, the component’s rela-
tive probability at that data point is computed, such that∑

c Wi,c = 1 for all i. Then the new component weight
estimates ω+

c are the averages of Wi,c across all n data
points.

Wi,c = ωc fc(xi | θc)∑
k ωk fk(xi | θk) , ω+

c = 1
n

n∑
i=1

Wi,c, (4)

Convergence. After each M-step of an EM cycle, we
compare θc,q (old parameter value) and θ+

c,q (updated
parameter value), where q indexes the elements of θc,
the parameters of component c. We say that the algo-
rithm has converged when the relative change κc,q :=
|θ+
c,q−θc,q| / max

(
|θ+
c,q|, |θc,q|

)
drops below a given thresh-

old thresh for all c, q, (if θ+
c,q = θc,q = 0, we set

κc,q := 0).
Having reviewed the necessary background, we now

describe the methods we use for peak extraction from
IMSCs.

Denoising and baseline correction
Background
A major challenge during peak detection in an IM spec-
trum is to find peaks that only slightly exceed the back-
ground noise level in a spectrum S = (St). To determine
whether the intensity St at coordinate t belongs to a peak
region or can be solely explained by background noise,
we propose a method based on the EM algorithm. It runs
inO(τ |T |) time where τ is the number of EM iterations.

Mixture model
Based on observations of IM spectra signal intensities, we
assume that

• the noise intensity has a Gaussian distribution over
low intensity values with mean μN and standard
deviation σN,

pN(s | μN, σN) = 1√
2π σN

·exp (−(s−μN)2/(2 σ 2
N)

)
• the true signal intensity has an Inverse Gaussian

distribution with mean μS and shape parameter λS,
i.e.,
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pS(s | μS, λS)=
√

λS/(2πs3)·exp
(−λS(s−μS)

2/(2μ2
Ss)

)
• there is an unspecific background component which

is not well captured by either of the two previous
distributions; we model it by the uniform distribution
over all intensities,

pB(s) = 1/(max(S) − min(S)),

and we expect the weight ωB of this component to be
close to zero in standard IM spectra. High weights
indicate an anomaly during the measurement.

We interpret the observed spectrum S as a sample
of a mixture of these three components with unknown
mixture coefficients. To illustrate this approach, consider
Figure 3, which shows the empirical intensity distribution
(histogram) of an arbitrary spectrum, together with the
estimated components (except the uniform distribution,
which has the expected coefficient of almost zero).
It follows that there are six independent parameters to

estimate: μN, σN, μS, λS and weights ωN,ωS,ωB (noise,
signal, background, where ωB = 1 − ωN − ωS).

Initial parameter values
Background noise intensities are assumed to follow a
Gaussian distribution at small intensity values. We can
determine its approximate mean μN and standard devia-
tion σN by considering the first and last 10% of data points
in each spectrum.
The initial weight of the noise component is set to cover

most points covered by this Gaussian distribution, i.e.,
ωN := |{t ∈ T | St � μN + 3 σN}| / |T |.
We assume that almost all of the remaining weight

belongs to the signal component, thus ωS = (1 − ωN) ·
0.999, and ωB = (1 − ωN) · 0.001.
To obtain initial parameters for the signal model, let

I ′ := {t ∈ T | St > μN + 3 σN} (the complement of
the intensities that are initially assigned to the noise com-
ponent). We set μS = (∑

t∈I′ (St − μN)
)
/|I ′| and λS =

(
∑

t∈I′ (1/(St − μN) − 1/μS))
−1 (which are the maximum

likelihood estimators for Inverse Gaussian parameters).

E-step
The hidden parameters Wt,c are computed using (4),
where the three component distributions fc are the three
component densities pN, pS, pB with their parameters and
the data x is a mean-smoothed version of the original
spectrum S: xt := 1

2α+1 ·∑t+α
t′=t−α St′ , where the smoothing

window margin is α := (1/2) · dgrid · Ct|d · |T |/Tlast. (Here
dgrid is the grid opening time of the spectrometer and Tlast
is the maximum IRM in T).

Maximum likelihood estimators
In the maximization step (M-step) we estimate maximum
likelihood parameters for the non-uniform components
using the original intensities of S again.

μN =
∑

t Wt,N · St∑
t Wt,N

, (5)

μS =
∑

t Wt,S · (St − μN)∑
t Wt,S

, (6)

σ 2
N =

∑
t Wt,N · (St − μN)2∑

t Wt,N
, (7)

λS =
∑

t Wt,S∑
t Wt,S · (1/(St − μN) − 1/μS)

(8)

for all t ∈ T .

Final step
After convergence, we correct the baseline and remove
noise: We first subtract μN from the signal value and then
reduce the remaining value by the estimated noise weight.
The corrected spectrum S+ is

S+
t := max

{
(1 − Wt,N)(St − μN), 0

}
, t ∈ T .

Reducing a spectrum to peakmodels
Background
The idea of processing a single (noise-reduced) IM spec-
trum S is to deconvolute it into separate components
described with statistical distribution functions. Several
components appear in each spectrum besides the peaks,
namely the previously described RIP and the tailing

Figure 3 Histogram of an arbitrary IM spectrum (green bars) and estimated distribution of the noise component (red line) and of the signal
component (blue line). Parameters for both components were estimated with the EM algorithm.
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described in Section ‘Data from MCC/IMS measure-
ments’. and background noise. We first determine and
remove the RIP tailing function and then determine the
peak parameters (including the RIP).

Determining the tailing function
The tailing function appears as a baseline in every spec-
trum (see Figure 2 for an example). Its shape and scale
changes from spectrum to spectrum; so it has to be deter-
mined in each spectrum and subtracted in order to extract
peaks from the remaining signal in the next step. Empir-
ically, we observe that the tailing function f (t) can be
described by a scaled shifted Inverse Gaussian, f (t) =
v · g(t;μ, λ, o) with g given by (1). The goal is to determine
the parameters θ = (v,μ, λ, o) such that fθ (t) under-fits
the given data S = (St), as shown in Figure 2.
Let rθ (t) := S(t) − fθ (t) be the residual function for

a given choice θ of parameters. As we want to penalize
r(t) < 0 but not (severely) r(t) > 0, we use the following
non-symmetric loss function that depends on a threshold
parameter γ > 0:

et(θ ; γ ) :=
{
rθ (t)2/2 if rθ (t) < γ ,
γ · rθ (t) − γ 2/2 if rθ (t) ≥ γ .

That is, the loss at time t is the residual squared when it
has a negative or small positive value less than the given
threshold γ > 0, but becomes a linear function of the
residual for larger positive residuals.
The goal is to find θ to minimize the total loss L(θ) :=∑
t et(θ ; γ ) for the given spectrum S and given γ > 0.

We use gradient descent to solve this nonlinear opti-
mization problem, to which we refer as non-linear loss
minimization (NLLM).
To estimate the tailing function,

1. we determine reasonable initial values for the
parameters θ = (v,μ, λ, o) (see below),

2. we solve NLLM with γ = σ 2
N to estimate the scaling

factor v, leaving the other parameters fixed,
3. we solve NLLM with γ = σ 2

N to estimate all four
parameters,

4. we solve NLLM with γ = σ 2
N/100 to re-estimate the

scaling factor v

where σN is the standard deviation of the noise as
described in Section ‘Denoising and baseline correction’.
The initial parameter values (v,μ, λ, o) are determined

as follows: For the scaling factor, we initially set v =
(1/2)

∑
t�|T | St . For the other parameters, we first esti-

mate the descriptors (μ′, σ ,m) as described below and
then use the correspondence to the parameters listed in
Appendix A. The initial σ is set to the standard devia-
tion of the whole RIP-only spectrum. We determine the
initial m as the RIP mode. It is a property of the Inverse

Gaussian distributions under consideration such that the
mean μ′ can only range within the interval I = [m,m +
0.7σ ]. To obtain an appropriate value for μ′, an auxil-
iary offset variable o′ is set to the largest IRM left of
the RIP mode where the signal is below σN, and μ′ it is
increased in small steps within I. The candidate descrip-
tors (μ′, σ ,m) are converted into corresponding param-
eters (μ, λ, o) until o ≥ o′. The so obtained parameters
constitute the initial parameter values.

Extracting peak parameters from a single spectrum
To extract all peaks from a spectrum (from left to right),
we repeat three sub-steps:

1. scanning for a potential peak, starting where the
previous iteration stopped;

2. determining peak parameters (Inverse Gaussian
distribution);

3. subtracting the peak from the spectrum and
continuing with the remainder.

Scanning. The algorithm scans for peaks, starting at the
left end of S, by sliding a window of a given width across S
and fitting a quadratic polynomial model to the data
points within the window. The window width (in index
units) is related to the grid opening time dgrid of the spec-
trometer and given as dgrid/Dlast · |D| data points, where
Dlast is the maximum (last) drift time measured.
The model is built in drift time (not IRM). Let f (d; θ) =

θ2 d2 + θ1 d + θ0 be the fitted quadratic polynomial inside
the window. We call a window a peak window if the
following conditions are fulfilled:

• the extreme drift time d∗ = θ1/(2θ2) lies within the
drift times of the window;

• the extreme drift time d∗ indicates a maximum (i.e.,
θ2 < 0);

• the maximum is sufficiently high above the noise level
(which is zero after preprocessing): f (d∗; θ) ≥ σN

The first condition can be more strongly restricted to
achieve more reliable results, by shrinking the interval
towards the center of the window. If no peak is found, the
moving window is shifted one index forward. If a peak is
detected, the window is shifted half the window length
forward before the next scan begins, but first the peak
parameters are computed.

Determining peak parameters. As described in Section
‘Peak models’, we can estimate all peak descriptors
(m, σ ,μ′) from its mode d∗ in drift time. We convert
them into the parameters (μ, λ, o) of the Inverse Gaussian
parameterization (see Appendix A). The scaling factor v
for the peak is v = f (d∗; θ)/g(m;μ, λ, o).
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The model function is subtracted from the spectrum,
and the next iteration is started with a window shifted by α

index units (consider Section ‘E-step’). For each spectrum,
the output of this step is a spectrum peak list, which is a set
of parameters for a mixture of weighted Inverse Gaussian
models describing the peaks.

Aligning consecutive spectrum peak lists
Background
Having a set of peak parameters for each spectrum, the
question arises how to merge the sets P = (Pi) and
P+ = (P+

j ) of two consecutive spectra. For each peak Pi,
we have stored the Inverse Gaussian parameters μi, λi, oi,
the peak descriptors μ′

i, σi,mi (mean, standard deviation,
mode) and the scaling factor vi, and similarly so for the
peaks P+

j . The idea is to compute a global alignment simi-
lar to the Needleman-Wunschmethod [18] between P and
P+. We need to specify how to score aligning Pi to P+

j and
how to score leaving a peak unaligned (i.e., a gap).

Scoring peak alignments
The score Zij for aligning Pi to P+

j is chosen by evaluating
Pi’s density function at the new mode m+

j and compar-
ing it to “typical” value an approximate standard deviation
away from the mode (atmi + δ, where δ := dgrid · Ct|d/φ),
resulting in the log-odds score

ζi,j = ln
(

g(m+
j ; μi, λi, oi)

g(mi + δ; μi, λi, oi)

)
.

Alternatively, leaving a peak unmatched results in a gap
score of zero.
Applying Needleman-Wunsch global alignment, we can

compute the optimal score of aligning the first i peaks
in the former spectrum with the first j peaks in the cur-
rent spectrum by dynamic programming. We initialize a
matrixZ, setting allZi,0 andZ0,j to zero and then compute,
for i ≥ 1 and j ≥ 1,

Zi,j = max

⎧⎨
⎩
Zi−1,j−1 + ζi,j,
Zi−1,j,
Zi,j−1.

Obtaining peak chains
The alignment is obtained with a traceback, recording the
optimal case in each cell, as usual. There are three cases to
consider.

• If P+
j is not aligned with a peak in P, potentially a new

peak starts at this retention time. Thus model P+
j is

put into a new peak chain.
• If P+

j is aligned with a peak Pi, the chain containing
Pi is extended with P+

j .
• All peaks Pi that are not aligned to any peak in P+

indicate the end of a peak chain at the current
retention time.

All completed peak chains are forwarded to the next
step, two-dimensional peak model estimation.

Estimating 2-D peakmodels
Background
Let C = (P1, . . . ,Pn) be a chain of one-dimensional
Inverse Gaussian models. The goal of this step is to esti-
mate a two-dimensional peak model (product of two
one-dimensional Inverse Gaussians) from the chain, as
described in Section ‘Peak models’, or to reject the
chain if the chain does not fit such a model well.
Potential problems are that a peak chain may contain
noisy 1-D peaks truncated at their borders, consist only
of noise or in fact consist of several consecutive 2-D
peaks at the same drift time and successive retention
times.

Estimating the parameters
As discussed in Section ‘Peak models’, the half-height
width ω1/2 in retention time of a peak centered at retention
time r can be described by an affine function ξ(r), Eq. (3),
and ω1/2 can be converted to the corresponding number of
data points (window width).
We have the parameters (v̂i, μ̂i,t, λ̂i,t, ôi,t) for each indi-

vidual peak i = 1, . . . , n in a peak chain, and the
corresponding descriptors (μ̂′

i,t, σ̂i,t, m̂i,t), as well as the
associated retention time ri and peak height hi = v̂i ·
g(m̂i,t; μ̂i,t, λ̂i,t, ôi,t).
We proceed similarly to Section ‘Extracting peak param-

eters from a single spectrum’ by fitting quadratic polyno-
mials b(r; θ) = θ2r2 + θ1r + θ0 in sliding windows of the
appropriate width ξ(ri) such that hi ≈ b(ri; θ).
Having found a window that fits a peak, we estimate ini-

tial descriptors for an Inverse Gaussian model in retention
time as follows:

v′
r = −θ21 /(4θ2) + θ0,

σr = √
v′
r/(2|θ2|),

mr = −θ1/(2θ2),
μ′
r = mr + ξ(mr) / (4φ).

The descriptors are then converted into model parame-
ters (see Appendix A).
After processing each window, we have obtained a list of

size, say, k, of Inverse Gaussian distributions. We expect
these distributions to be a mixture of k overlapping peaks
in a single peak chain. To obtain an optimal deconvo-
lution, we first normalize the volume factors v′

r of the
k components to obtain vr,j such that

∑k
j=1 vr,r = 1 and

then apply the EM algorithm. As a byproduct, we obtain
an (n × k) matrix M = (Mi,j) that determines the mem-
bership probability for each of the n data points (ri, hi) to
each of the k models.
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To obtain the Inverse Gaussian distribution parame-
ters in the IRM dimension for each of the k models,
we first compute model descriptors using a membership-
weighted average over the individual model descriptors:
For j ∈ {1, . . . , k}, let

Mj :=
∑
i�n

Mi,j,

μ′
j,t :=

1
Mj

∑
i�n

Mi,j · μ̂′
i,t,

σj,t := 1
Mj

∑
i�n

Mi,j · σ̂i,t,

mj,t := 1
Mj

∑
i�n

Mi,j · m̂i,t.

We then convert these descriptors back into model
parameters (Appendix A). The final peak volume is com-
puted as v∗

j = v′
j,r · ∑

i�n vi,t.
For every model j ∈ {1, . . . , k}, we check the following

conditions:

• The width at half height in the retention time
dimension has approximately the expected size (cf.
Eqs. (2), (3)): ξ(mj,r)/2 � σj,r/φ < 2 · ξ(mj,r),

• The peak height at its maximum is sufficiently above
the noise level: v∗

j · g(mj,t;μj,t, λj,t, oj,t)·
g(mj,r;μj,r, λj,r, oj,r) ≥ noise_margin · σN , where
noise_margin > 0 is a tunable parameter,

• the Inverse Gaussian peak model g in retention time
correlates well (in terms of the Pearson
product-moment correlation coefficient ρ) with its
quadratic approximation b in a window around the
mode. More precisely, consider the window
W = [mj,r − ξ(mj,r)/φ, mj,r + ξ(mj,r)/φ], the model
vector G = g(x;μj,r, λj,r, oj,r) for x ∈ W and the
quadratic approximation vector B = bj(x; θ) for
x ∈ W , and test whether the Pearson correlation
satisfies ρ(G,B) ≥ ρmin.

If all conditions are satisfied, we have identified a
2-D peak model (v∗

j ,μj,t, λj,t, oj,t,μj,r, λj,r, oj,r). Otherwise
the model is discarded.

Peak clustering
Background
We now consider a series of IMS measurements, for each
of which we have extracted peaks available in the form of
parameter vectors or descriptors. The question arises how
to decide which descriptors in different measurements
represent the same peak (and hence potentially the same
VOC).

Let X be the union of peak locations in all mea-
surements, let |X| =: n, and let Xi,R be the reten-
tion time of peak i and Xi,T its IRM. We introduce a
clustering approach using the EM algorithm with two-
dimensional Gaussian mixtures that differs from the stan-
dard approach by its ability to dynamically adjust the
number of clusters in the process.

Mixture model
We assume that the measured retention times and IRMs
belonging to peaks from the same compound are indepen-
dently normally distributed in both dimensions around
the (unknown) true retention time and IRM. Let θj :=
(μj,R, σj,R,μj,T, σj,T) be the parameters for component j,
and let fj(x′givenθj be a two-dimensional Gaussian prod-
uct distribution for a peak location x = (xR, xT)with these
parameters.
Themixture distribution is f (x) = ∑C

j=1 ωj fj(x | θj)with
a yet undetermined number C of clusters. Note that there
is no “background” model component.

Initial parameter values
In the beginning, we initialize the algorithm with as many
clusters as peaks, i.e., we set C := n. This assignment
makes a backgroundmodel obsolete, because all peaks are
assigned to at least one cluster. All clusters get as start
parameters for μj,R,μj,T the original retention time and
IRM of peak location Xj, respectively, for j = 1, . . . , n. We
set σj,T := t_width > 0 and σj,R := ξ(Xj,R)/φ.

Dynamic adjustment of the number of clusters
After computing weights in the E-step, but before starting
the M-step, we dynamically adjust the number of clusters
by merging clusters whose centers are close to each other.
Every pair j < k of clusters is compared in a nested for-
loop. When |μj,T − μk,T| < t_width and |μj,R − μk,R| <

ξ
(
max{μj,R,μk,R}), then clusters j and k are merged by

summing the EM weights: ω+ := ωj + ωk and Wi,+ :=
Wi,j + Wi,k for all i. The summed weights are assigned
to the location of the cluster with larger weight. (The re-
computation of the parameters happens immediately after
merging in the maximization step). The comparison order
may matter in rare cases for deciding which peaks are
merged first, but since new means and variances are com-
puted, possible merges that were omitted in the current
iteration will be performed in the next iteration.
This merging step is applied after in the second EM iter-

ation, since the cluster means need at least one iteration
to move towards each other.

Maximum likelihood estimators
The maximum likelihood estimators for mean and vari-
ance of a two-dimensional Gaussian are the standard ones,
taking into account the membership weights,
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μj,d =
∑n

i=1 Wi,j · Xi,d∑n
i=1 Wi,j

, d ∈ {T,R}, (9)

σ 2
j,d =

∑n
i=1 Wi,j · (Xi,d − μj,d)

2∑n
i=1 Wi,j

, d ∈ {T,R}, (10)

for all components j = 1, . . . ,C.
One problem using this approach emerges from the fact

that initially each cluster contains only one peak, leading
to an estimated variance of zero in many cases. To pre-
vent this, minimum values are enforced such that σj,T ≥
t_width and σj,R ≥ ξ(μj,R)/φ for all j.

Final step
The EM loop terminates when no merging occurs and
the convergence criteria for all parameters are fulfilled.
The resulting membership weights determine the number
of clusters as well as the membership coefficient of peak
location Xi to cluster j. If a hard clustering is desired, the
merging step has to be traced.

Evaluation
We evaluate different properties of the online method:

1. the quality of reducing a single spectrum to a peak list
(denoising/baseline correction (Section ‘Denoising
and baseline correction’) and spectrum reduction
(Section ‘Reducing a spectrum to peak models’),

2. the execution time of both steps,
3. the quality of the new clustering approach,
4. the correlation between manual annotations on full

IMSCs by a computer-assisted expert and our
automated online extraction method.

Parameters. For evaluation measurements, the MCC
was adjusted to a temperature of 40°C and throughput
of 150 mL min−1. The IMS had a voltage of 4380 V, a
grid opening time of 300 μs and a throughput of 150 mL
min−1. We chose the following parameters [9]:

• r_width_offset = 2.5 s (width offset for peaks in
retention time),

• r_width_factor = 0.06 (width slope for peaks in
retention time),

• t_width = 0.003 V s cm−2 (standard deviation for
peaks in IRM),

• thresh (convergence threshold; value varies within
evaluation),

• noise_margin = 4 (factor multiplied with
standard deviation of background noise for minimal
peak height),

• ρmin = 0.95 (minimal Pearson product-moment
correlation coefficient).

Quality of single spectrum reduction
In a first experiment, we tested the quality of the spec-
trum reduction method using an idea by Munteanu and

Wornowizki [19] that determines the agreement between
an observed set of data points, interpreted as an empirical
distribution function F (the data) and a model distribu-
tion G (the mixture distribution obtained from the peak
list parameters). The approach writes F = s̃ ·G+(1− s̃) ·H
with s̃ ∈ [ 0, 1], where H is a non-parametric distribution
whose inclusion ensures the fit of the model G to the
data F . If the weight s̃ is close to 1.0, then F is a plausi-
ble sample from G. We compare the original spectra and
reduced spectra (peaks from peak lists) from a previously
used dataset [20]. This set contains 69 measurements
preprocessed with a 5 × 5 average. Every measurement
contains 1200 spectra. For each spectrum in all measure-
ments, we computed the reduced spectrum model and
determined s̃. Over 92% of all 82 000 models achieved s̃ =
1 and over 99% reached s̃ ≥ 0.9. No s̃ dropped below 85%.
In summary, spectrum reduction provides an accurate
parametric representation of most spectra.

Execution time
We tested our method on two different platforms, (1)
a desktop PC with Intel(R) Core(TM) i5 2.80GHz CPU,
8GB memory, Ubuntu 12.04 (64bit) OS and (2) a Rasp-
berry Pi [21] type B with ARM1176JZF-S 700MHz CPU,
512 MBmemory, RaspbianWheezy (32bit) OS, once with
the factory defaults of 700 MHz and once overclocked up
to 900 MHz. The Raspberry Pi was chosen because it is
a complete credit-card-sized low-cost single-board com-
puter with low CPU and power consumption (3.5 w). This
kind of device is appropriate for data analysis in future
mobile measurement devices.
Recall that each spectrum contains 12 500 data points.

It is current practice to analyze not the full spectra, but
aggregated ones, where five consecutive values are aver-
aged. Here we consider the full spectra, slightly aggregated
ones (average over two values, 6 250 data points) and
standard aggregated ones (average over five values, 2 500
data points). We measured the average execution time of
denoising, baseline correction and consecutive spectrum
reduction. Table 1 shows the results. It is remarkable that
at the highest resolution (Average 1) the Raspberry Pi
with 900 MHz keeps barely the time bound of 100 ms
between consecutive spectra. At lower resolutions, the
Raspberry Pi satisfies the time restrictions easily. The
desktop PC copes with the analysis effortless on any
setting.
We found that in the steps that use the EM algo-

rithm, on average 25–30 EM iterations were necessary
for a precision of thresh := 0.001 (i.e., 0.1%) (see
Convergence in Section ‘The EM Algorithm for mixtures
with heterogeneous components’). Relaxing the thresh-
old from 0.001 to 0.01 halved the number of iterations
without noticeable difference in the resulting estimated
parameters.
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Table 1 Average processing time of denoising, baseline
correction and spectrum reduction on two platforms with
different clock rates, averagingmethods (single spectra,
averages of 2 and 5 spectra) and convergence thresholds
thresh

thresh Platform Avg 1 Avg 2 Avg 5

0.1%

Desktop PC 4.36 ms 2.09 ms 0.88 ms

Rasp. Pi (700 MHz) 119.48 ms 55.02 ms 21.82 ms

Rasp. Pi (900 MHz) 97.19 ms 43.62 ms 17.42 ms

1.0%

Desktop PC 4.26 ms 2.01 ms 0.66 ms

Rasp. Pi (700 MHz) 116.69 ms 52.63 ms 16.99 ms

Rasp. Pi (900 MHz) 94.03 ms 41.46 ms 13.48 ms

Clustering
To evaluate peak clustering methods, we simulate peak
locations according to locations in real MCC/IMS
datasets, together with the true partition P of peaks.
Most of the detected peaks appear in a small dense area

early in the measurement. The remaining peaks are dis-
tributed widely, which is referred to as the sparse area (we
let the areas overlap such that the dense are is contained
in the sparse area). The areas approximately have the fol-
lowing boundaries (in units of (V s cm−2, s) from lower
left to upper right point, cf. Figure 1:

measurement: (0, 0), (1.45, 600)
dense area: (0.5, 4), (0.7, 60)
sparse area: (0.5, 4), (1.2, 450)

Peak clusters are ellipsoidal and dense. From [9], we
know the minimum required distance between two peaks
in order to be identified as two separate compounds. We
simulate 30 peak cluster centroids in the dense area and
20 in the sparse area, all picked randomly and uniformly
distributed in the respective area. We then randomly pick
the number of peaks per cluster. We also randomly pick
the distribution of peaks within a cluster. Since we do not
know the actual distribution model, we decided to sim-
ulate with three models: normal (n), exponential (e) and
uniform (u) distribution with the following densities:

fn(r, t | μt, σt,μr, σr)
= N (t | μt, σt) · N (r | μr, σr)

fe(r, t | μt, λt,μr, λr)
= λtλr exp

( − (λt|t − μt| + λr|r − μr|)
)
/4

fu(r, t | μt, νt,μr, νr)

=
{

(πνtνr)−1 if |t−μt|2
ν2t

+ |r−μr|2
ν2r

� 1
0 otherwise

Here (μt,μr) is the coordinate of the centroid with RIM
in Vs/cm2 and retention time in s. For the normal distri-
bution, we used σt = 0.002 and σr = μr · 0.002 + 0.2. For
the exponential distribution, we used λt = (1.45 · 2500)−1

(reduced mobility width for in single cell within M) and
λr = 1/(μr · 0.002 + 0.2). For the uniform distribution,
we used an ellipsoid with radii νt = 0.006 and νr =
μr · 0.02 + 1.
We compared our adaptive EM clustering with two

common clustering methods: k-means and DBSCAN.
Since k-means needs a fixed number of clusters k
and appropriate start values for the centroids, used k-
means++ [22] for estimating good starting values and give
it an advantage by assigning the true number of parti-
tions. DBSCAN has the advantages that it does not need
to know the number of clusters in advance and that it can
find non-linear cluster boundaries, but it does not easily
yield parametric cluster descriptors.
To measure the quality of an obtained clustering C

we use the Fowlkes-Mallows index (FMI, [23]) and the
normalized variation of information (NVI) score [24].
For the FMI one considers all pairs of data points. If

two data points belong to the same true partition of P ,
they are called connected. Accordingly, a pair of data
points is called clustered if they are clustered together
by the clustering method are evaluating. Pairs of data
points that are both connected and clustered are called
true positives (TP). False positives (FP, not connected
but clustered) and false negatives (FN, connected but
not clustered) are computed analogously. The FMI is the
geometric mean of precision and recall: FMI(P , C) :=√
TP/(TP + FP) · TP/(TP + FN), where P is the true

partition and C is the clustering. We have FMI(P , C) ∈
[ 0, 1], and FMI(P , C) = 1 indicates perfect agreement.
The FMI is difficult to interpret when the number of
clusters in C and P differs significantly.
Therefore we use a second measure that considers clus-

ter sizes only, the normalized variation of information
(NVI). To compute the NVI, an auxiliary (|P| × |C|)-
dimensional matrix A = (ai,j) is computed, where ai,j
is the number of data points within partition i that
are assigned to cluster j. The NVI score is defined via
entropies; let n be the number of data points and

H(P) := −
∑
i�|P|

∑
j�|C| ai,j
n

log
∑

j�|C| ai,j
n

,

H(C) := −
∑
j�|C|

∑
i�|P| ai,j
n

log
∑

i�|P| ai,j
n

,

H(P|C) := −
∑
j�|C|

∑
i�|P|

ai,j
n

log
ai,j∑

i′�|P| ai′,j
,

H(C|P) := −
∑
j�|C|

∑
i�|P|

ai,j
n

log
ai,j∑

j′�|C| ai,j′
,

NVI(P , C) :=
{

H(P|C)+H(C|P)
H(P)

if H(P) �= 0,
H(C) otherwise.
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Figure 4 Histograms of Fowlkes-Mallows index (FMI; higher is better) and normalized variation of information (NVI; lower is better) comparing 100
simulated measurements containing partitioned peak locations with their clusters produced by the different methods.

Here NVI(P , C) = 0 indicates perfect agreement
between the cluster size distributions. Together, an FMI
of 1 and an NVI score of 0 indicate a perfect clustering.
For the first test, we evaluated 100 sets of data points

distributed as described above. The cluster model (nor-
mal, exponential or uniform) was drawn randomly. The

results show that even with the advantage that k-means
knows the true k, our adaptive EM clustering performs
best on average in terms of FMI and NVI score (Figure 4).
For the second test, we additionally inserted 200 uni-

formly distributed (noise) peaks into the measurement
area. All these peaks are singletons and have no matching

Figure 5 Histograms similar to Figure 4, but in a more realistic noisy scenario (see text). An FMI of 1 and NVI of 0 would be optimal.
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Figure 6 Time series of discovered intensities of two peaks. Left: A peak with agreement between manual and automated online annotation.
Right: A peak where the online method fails to extract the peak in several measurements. If one treated zeros as missing data, the overall trend
would still be visible.

peaks. The results (Figure 5) show that the adaptive EM
clustering still performs best on average, whereas k-means
fails.

Comparison of automated online peak extraction with
manual offline annotation
The fourth experiment compares extracted peaks from a
time series of measurements of two automated methods
to an expert manual annotation. The automated methods
are our online analysis process described here and auto-
mated peak detection using the commercial VisualNow
software.
Here 15 rats were monitored in 20 minute intervals

for up to a day. Each rat resulted in 30–40 measure-
ments (a time series) for a total of 515 measurements. To
track peaks over time, we used the previously described
EM clustering method.

As an example, Figure 6 shows time series of intensi-
ties of two peaks detected by computer-assisted manual
annotation and using our online algorithm. The exam-
ple shows that there are cases where the sensitivity of
the online algorithm is not perfect; this is mainly true
for peaks whose intensity only slightly exceeds the back-
ground noise.
To obtain an overview over all time series, we com-

puted the cosine similarity γ ∈ [−1,+1] time series of
peak intensities discovered by manual annotation and
each automated method. We also computed the recall
automated method for each time series, that is, the rela-
tive fraction of measurements where the peak was found
by the algorithm among those where it was found by
manual annotation. Figure 7 shows overall good agree-
ment between both automated methods (our online
method and automated VisualNow peak extraction) with

Figure 7 Kernel density estimation (kde) plots of recall and cosine similarity of peak intensity, comparing automatically picked peaks from our
online algorithm and VisualNow against expert annotation. Each dot corresponds to a time series of one peak. Optimal results would be a recall of
1.0 and a cosine similarity of 1.0 for each time series.
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the expert manual annotation. The cosine similarity of
the inferred time series is in better agreement than the
more variable recall. When comparing automated meth-
ods against each other, we outperformVisualNow in terms
of sensitivity and computation time: About 31% of the
points extracted by the online method exceed 90% recall
and 98% cosine similarity whereas only 5% of the time
series extracted by VisualNow achieve these values. The
peak detection of one measurement takes about 2 seconds
on average (when the whole measurement is available at
once) with the online method and about 20 seconds with
VisualNow on the desktop computer described above.
VisualNow only provides the position and signal intensity
of the peak’s maximum, whereas our method additionally
provides shape parameters.
Problems of our online method stem from low-intensity

peaks only slightly above the detection threshold, and
resulting fragmentary or rejected peak chains.

Discussion and conclusion
We presented the first approach to extract peaks from
MCC/IMS measurements while they are being captured,
with the long-term goal to remove the need for storing full
measurements before analyzing them in small embedded
devices. Our method is fast and satisfies the time restric-
tions even on a low-power CPU platform like a Raspberry
Pi and outperforms existing software.
While performing well on single spectra, there is room

for improvement in merging one-dimensional peak mod-
els into two-dimensional peak models. Our method has to
be further evaluated in clinical studies or biotechnologi-
cal monitoring settings. It also has not been tested with
the negative mode of an IMS for lack of data. In general,
the robustness of the method under adversarial condi-
tions (high concentrations with formation of dimer ions,
changes in temperature or carrier gas flow in the MCC)
has to be evaluated and probably improved.

Appendix A: peak descriptors and parameters
The shifted Inverse Gaussian distribution with parameters
o (shift or offset), μ (mean minus shift, also called relative
mean) and λ (shape) is given by (1). There is a bijec-
tion [13] between (μ, λ, o) and the descriptors (μ′, σ ,m),
which are the absolute mean μ′ = o + μ, the standard
deviation σ and the modem. Given (μ, λ, o), we have

μ′ = μ + o,

σ =
√

μ3/λ,

m = μ · (√
1 + (9μ2)/(4λ2) − (3μ)/(2λ)

) + o,

and, given (μ′, σ ,m), we use auxiliary expressions p and q
to find

p := ( − m(2μ′ + m) + 3 · (μ′2 − σ 2)
)
/
(
2(m − μ′)

)
,

q := (
m(3σ 2 + μ′ · m) − μ′3)/(2(m − μ′)

)
,

o = −p/2 −
√
p2/4 − q,

μ = μ′ − o,
λ = μ3/σ 2.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DK developed and implemented the methods and evalutated them in
consultation with SR. DK and SR wrote the manuscript. Both authors read and
approved the final manuscript.

Acknowledgements
DK and SR acknowledge the support of Deutsche Forschungsgemeinschaft
(DFG) within the Collaborative Research Center SFB 876 (http://sfb876.tu-
dortmund.de), “Providing Information by Resource-Constrained Data Analysis”,
subproject TB1. We are grateful to Jörg Ingo Baumbach for help with
numerous questions and for providing datasets. We thank Max Wornowizki
from subproject C3 for providing methodology for the first evaluation.

Received: 20 March 2015 Accepted: 2 April 2015

References
1. Bessa V, Darwiche K, Teschler H, Sommerwerck U, Rabis T, Baumbach JI,

et al. Detection of volatile organic compounds (VOCs) in exhaled breath
of patients with chronic obstructive pulmonary disease (COPD) by ion
mobility spectrometry. Int J Ion Mobility Spectrom. 2011;14:7–13.

2. Bunkowski A, Bödeker B, Bader S, Westhoff M, Litterst P, Baumbach JI.
MCC/IMS signals in human breath related to sarcoidosis – results of a
feasibility study using an automated peak finding procedure. J Breath Res.
2009;3(4):046001.

3. Westhoff M, Litterst P, Freitag L, Urfer W, Bader S, Baumbach JI. Ion
mobility spectrometry for the detection of volatile organic compounds in
exhaled breath of lung cancer patients. Thorax. 2009;64:744–8.

4. Keller T, Schneider A, Tutsch-Bauer E, Jaspers J, Aderjan R, Skopp G. Ion
mobility spectrometry for the detection of drugs in cases of forensic and
criminalistic relevance. Int J Ion Mobility Spectrom. 1999;2(1):22–34.

5. Ewing RG, Atkinson DA, Eiceman GJ, Ewing GJ. A critical review of ion
mobility spectrometry for the detection of explosives and explosive
related compounds. Talanta. 2001;54(3):515–29.

6. Kolehmainen M, Rönkkö P, Raatikainen O. Monitoring of yeast
fermentation by ion mobility spectrometry measurement and data
visualisation with self-organizing maps. Anal Chim Acta.
2003;484(1):93–100.

7. Kreuder AE, Buchinger H, Kreuer S, Volk T, Maddula S, Baumbach J.
Characterization of propofol in human breath of patients undergoing
anesthesia. Int J Ion Mobility Spectrom. 2011;14:167–75.

8. Bunkowski A. MCC-IMS data analysis using automated spectra processing
and explorative visualisation methods. PhD thesis: Bielefeld University;
2011.

9. Bödeker B, Vautz W, Baumbach JI. Peak finding and referencing in
MCC/IMS-data. Int J Ion Mobility Spectrom. 2008;11(1):83–7.

10. D’Addario M, Kopczynski D, Baumbach JI, Rahmann S. A modular
computational framework for automated peak extraction from ion
mobility spectra. BMC Bioinformatics. 2014;15(1):25.

11. Kopczynski D, Rahmann S. An online peak extraction algorithm for ion
mobility spectrometry data. In: WABI. Lecture Notes in Computer Science.
New York: Springer; 2014. p. 232–46.

12. Eiceman GA, Karpas Z. Ion Mobility Spectrom, Second Edition. New York:
Taylor & Francis; 2005.

13. Kopczynski D, Baumbach JI, Rahmann S. Peak modeling for ion mobility
spectrometry measurements. In: Signal Processing Conference (EUSIPCO),
2012 Proceedings of the 20th European. New York, NY, USA: IEEE;
2012. p. 1801–5.

http://sfb876.tu-dortmund.de
http://sfb876.tu-dortmund.de


Kopczynski and Rahmann Algorithms for Molecular Biology  (2015) 10:17 Page 14 of 14

14. Spangler GE, Collins CI. Peak shape analysis and plate theory for plasma
chromatography. Anal Chem. 1975;47(3):403–7.

15. Einstein A. Über die von der molekularkinetischen Theorie der Wärme
geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten
Teilchen. Annalen der Physik. 1905;322(8):549–60.

16. Nocedal J, Wright SJ. Numerical Optimization, 2nd edn. New York:
Springer; 2006.

17. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete
data via the EM algorithm. J R Stat Soc Ser B (Methodological).
1977;39:1–38.

18. Needleman SB, Wunsch CD. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J Mol Biol.
1970;48(3):443–53.

19. Munteanu A, Wornowizki M. Demixing empirical distribution functions.
Technical Report 2014-02, Collaborative Research Center 876, TU
Dortmund. 2014.

20. Hauschild AC, Kopczynski D, D’Addario M, Baumbach JI, Rahmann S,
Baumbach J. Peak detection method evaluation for ion mobility
spectrometry by using machine learning approaches. Metabolites.
2013;3(2):277–93.

21. Raspberry Pi Foundation. Raspberry Pi. 2014. http://www.raspberrypi.org/.
22. Arthur D, Vassilvitskii S. K-means++: The advantages of careful seeding.

In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms. SODA ‘07. Philadelphia: Society for Industrial and
Applied Mathematics; 2007. p. 1027–35.

23. Fowlkes EB, Mallows CL. A method for comparing two hierarchical
clusterings. J Am Stat Assoc. 1983;78(383):553–69.

24. Reichart R, Rappoport A. The nvi clustering evaluation measure. In:
Proceedings of the Thirteenth Conference on Computational Natural
Language Learning. Stroudsburg, PA, USA: Association for Computational
Linguistics; 2009. p. 165–73. http://dl.acm.org/citation.cfm?id=1596374.
1596401.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.raspberrypi.org/
http://dl.acm.org/citation.cfm?id=1596374.1596401
http://dl.acm.org/citation.cfm?id=1596374.1596401

	Abstract
	Keywords

	Introduction
	Background
	Data from MCC/IMS measurements
	Peak models
	Optimization methods
	Non-linear Least Squares
	The EM algorithm for mixtures with heterogeneous components
	E-Step.
	Convergence.



	Denoising and baseline correction
	Background
	Mixture model
	Initial parameter values
	E-step
	Maximum likelihood estimators
	Final step

	Reducing a spectrum to peak models
	Background
	Determining the tailing function
	Extracting peak parameters from a single spectrum
	Scanning.
	Determining peak parameters.



	Aligning consecutive spectrum peak lists
	Background
	Scoring peak alignments
	Obtaining peak chains

	Estimating 2-D peak models
	Background
	Estimating the parameters

	Peak clustering
	Background
	Mixture model
	Initial parameter values
	Dynamic adjustment of the number of clusters
	Maximum likelihood estimators
	Final step

	Evaluation
	Quality of single spectrum reduction
	Execution time
	Clustering
	Comparison of automated online peak extraction with manual offline annotation

	Discussion and conclusion
	A
	Competing interests
	Authors' contributions
	Acknowledgements
	References

