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Abstract

Background: Autocatalytic sets are considered to be fundamental to the origin of life. Prior theoretical and
computational work on the existence and properties of these sets has relied on a fast algorithm for detecting
self-sustaining autocatalytic sets in chemical reaction systems. Here, we introduce and apply a modified version and
several extensions of the basic algorithm: (i) a modification aimed at reducing the number of calls to the
computationally most expensive part of the algorithm, (ii) the application of a previously introduced extension of the
basic algorithm to sample the smallest possible autocatalytic sets within a reaction network, and the application of a
statistical test which provides a probable lower bound on the number of such smallest sets, (iii) the introduction and
application of another extension of the basic algorithm to detect autocatalytic sets in a reaction system where
molecules can also inhibit (as well as catalyse) reactions, (iv) a further, more abstract, extension of the theory behind
searching for autocatalytic sets.

Results: (i) The modified algorithm outperforms the original one in the number of calls to the computationally most
expensive procedure, which, in some cases also leads to a significant improvement in overall running time, (ii) our
statistical test provides strong support for the existence of very large numbers (even millions) of minimal autocatalytic
sets in a well-studied polymer model, where these minimal sets share about half of their reactions on average, (iii)
“uninhibited” autocatalytic sets can be found in reaction systems that allow inhibition, but their number and sizes
depend on the level of inhibition relative to the level of catalysis.

Conclusions: (i) Improvements in the overall running time when searching for autocatalytic sets can potentially be
obtained by using a modified version of the algorithm, (ii) the existence of large numbers of minimal autocatalytic sets
can have important consequences for the possible evolvability of autocatalytic sets, (iii) inhibition can be efficiently
dealt with as long as the total number of inhibitors is small.
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Background
The concept of autocatalytic sets was introduced by
Kauffman [1-3] to study the idea of life as a functionally
closed and self-sustaining chemical reaction system. This
concept is closely related to other such models and ideas
[4-7] and is believed to have played a crucial role in the
origin of life. It was later formalized mathematically in the
form of RAF theory [8-10].

To briefly review RAF theory, we first define a chemi-
cal reaction system (CRS) as a tuple (X,R, C) consisting
of a set of molecule types X, a set of (possible or allowed)
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chemical reactions R, and a catalysis set C indicating
which molecule types can catalyse which reactions. Next,
a food set F ⊂ X is defined as a subset of molecule types
that are assumed to be freely available from the environ-
ment (i.e., they do not necessarily have to be produced
by any of the reactions in R). Thus F is a subset of X,
and we will denote a CRS with associated food set F as a
quadruple Q = (X,R, C, F).

An autocatalytic set (or RAF set) for Q = (X,R, C, F) is
a subset R′ ⊆ R of reactions which is:

1. reflexively autocatalytic (RA): each reaction r ∈ R′ is
catalysed by at least one molecule that is either
present in F or can be formed from F by using a
series of reactions only from R′ itself.
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2. food-generated (F): each reactant of each reaction in
R′ is either present in F or can be formed from F by
using a series of reactions only from R′ itself.

The first (RA) part of this definition captures the func-
tionally closed property mentioned above; the second (F)
part captures the self-sustaining property. A more formal
definition of RAF sets is provided in [9,11], including an
efficient (polynomial-time) algorithm for finding such sets
in any (arbitrary) CRS. This RAF algorithm returns the
union of all RAF (sub)sets that exist within a given CRS,
or the empty set if the CRS does not contain any RAF set.
Figure 1 presents a simple example of an RAF set.

As a simple model of a CRS, we use the binary poly-
mer model as also introduced by Kauffman [2,3]. In this
model, molecule types are represented by bit strings up to
a certain length n, with the food set made up of bit strings
up to a given small length t (e.g., t = 2). The possible
reactions are ligation (concatenating two bit strings into
one larger one) and cleavage (cutting a bit string into two
smaller ones). Finally, the catalysis events are assigned at
random, with a given probability p(x, r) that a molecule
x ∈ X catalyses a reaction r ∈ R. There are several rea-
sons to model catalysis randomly. Firstly, it is the simplest
null model, and allows tractable calculations that lead to
explicit formulae for the probability of RAFs, and theo-
rems concerning their properties. Secondly, results from
this simple model can be used to accurately predict the
appearance of RAFs in more complex models (such as
template-matching catalysis [12]). Thirdly, in general, lit-
tle is known about the distribution of catalysis in real

chemical systems and, as with chemical reactions, pre-
dicting catalysis is a hard problem [13] so the random
model is a convenient default option. Finally, this model
has also been used in other, related, computational studies
on autocatalytic sets [14,15].

Using this binary polymer model, it was shown that RAF
sets are highly likely to exist in general CRSs, even for
very moderate and chemically plausible levels of cataly-
sis [9,16,17]. Furthermore, this result still holds when (i) a
more realistic “template-based” form of catalysis is used,
where potential catalysts have to match a certain number
of bits around the reaction site [11,12], (ii) only the longest
polymers can act as catalysts, also in combination with
the template constraint [18], (iii) a “partitioned” polymer
set is used, where the polymer set is partitioned into two
modules, where polymers can undergo only reactions
within their own module, but catalysis can be both within
and between modules, such as in an RNA/protein world
[19], and (iv) when catalysis events are distributed accord-
ing to a power-law distribution, resembling real-world
networks [20].

The RAF sets that are found by the RAF algorithm are
called maximum RAF sets (maxRAFs). However, it was
shown that a maxRAF can often be decomposed into
multiple smaller subsets which themselves are RAF sets
(subRAFs) [21]. If a subRAF cannot be reduced any fur-
ther without losing the RAF property, it is referred to as
an irreducible RAF (irrRAF) set. The existence of multiple
autocatalytic subsets can actually give rise to an evolution-
ary process [15], and the emergence of larger and larger
autocatalytic sets over time [21].

Figure 1 An RAF set. A simple example of an RAF set, with food set F = {
f1, f2, f3, f4, f5

}
. Dots represent molecule types, squares represent reactions,

solid arrows indicate reactants and products, and catalysis is indicated by dashed arrows.
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Finally, RAF sets are not just a theoretical construct, but
have been shown to exist in real chemical systems [22-25].
In fact, RAF theory can be applied directly and success-
fully to model such real chemical reaction systems [26],
providing more insight into their structure and proper-
ties. Moreover, RAF sets were recently found to exist in an
actual bacterial metabolic network [27].

The basic RAF algorithm
The basic RAF algorithm [9,11] relies on the computa-
tion of the closure of the food set. Informally, the closure
clR(Y ) of a set of molecule types Y relative to a reaction
set R is the set of all molecule types that can be produced
by starting with Y and repeatedly applying reactions from
R [9]. Given a CRS (X,R, C, F), the basic RAF algorithm
(as presented in [11]) is then as follows:

Algorithm 1 Basic RAF algorithm
1. Set k = 0, and R0 = R;
2. Compute clRk (F);
3. For each reaction r ∈ Rk for which (1) all catalysts or

(2) one or more reactants are not in clRk (F), remove
r from Rk . Let the resulting set of reactions be Rk+1;

4. If Rk+1 = Rk , return Rk+1; otherwise, increment k
and go to step 2.

Equivalently, let us define a function f from the 2R0

(the set of subsets of R0) to 2R0 as follows: For R ⊆ R0
let f (R) be the set of reactions r in R that satisfy the
property that all the reactants of r and at least one cata-
lyst of r are present in clR(F). Using f we now define a
sequence: f k(R); k = 0, 1, 2, . . . as follows: set f 0(R) = R
and, for k ≥ 0, define f k+1(R) = f (f k(R)). The algo-
rithm then consists of recursive application of f to the
initial set of reactions R, halting at the first fixed point of
f , which, if this set is non-empty, will be an RAF by defini-
tion. Moreover, in [9,11] it was shown that this fixed point
is the maxRAF (if one exists); otherwise, the algorithm
returns the empty set, in which case no RAF exists. It was
also shown that the worst-case running time of this algo-
rithm is O(|R|2 log |R|), i.e. polynomial in the size of the
input |R|.

Outline
In this paper, we introduce and apply a modified version of
the basic RAF algorithm, which is based on the concept of
a pseudo-RAF. This concept is related to that of a chemical
organisation [28], as discussed in [29], and has useful algo-
rithmic properties which we will explore in more detail
here. We also present performance results which show
that the modified algorithm is generally more efficient.

Next, we address the question of the expected (mini-
mum) number of irreducible RAF sets that exist within

an RAF set, which is an important issue for the possi-
ble evolvability of RAF sets [15]. In [21] (Theorem 1, part
1) it was proven formally that the number of irrRAFs
within an RAF can grow exponentially with the size of the
RAF. Since we do not know of an efficient algorithm to
count the number of irrRAFs, we introduce a statistical
test that provides a probable lower bound on the num-
ber of irrRAFs that can be expected to exist in any given
RAF set. We apply a previously introduced extension of
the RAF algorithm to randomly sample irrRAFs within an
RAF to perform this statistical test.

We then introduce another extension of the basic RAF
algorithm that can also handle cases where there is a
small amount of inhibition, i.e., when a small number of
molecules may inhibit certain reactions from happening.
In [16], it was shown that the general problem of find-
ing RAF sets within a CRS that includes inhibition is an
NP-hard problem. However, we show here that when the
number of inhibitors is limited, the problem can still be
tractable, and we apply this approach in simulations.

Pseudo-RAFs and their use in a modified RAF
algorithm
In this section, we present a modified RAF algorithm
which makes use of the concept of pseudo-RAF sets, which
were briefly introduced in [29]. Here, we present a more
detailed exploration of their properties, and then com-
pare the performance of implementations of the basic and
modified RAF algorithms.

Pseudo-RAFs
Informally, a subset of reactions is a pseudo-RAF if and
only if every reactant of every reaction is either a food
molecule or is produced by some reaction in the set, and
every reaction is catalysed by at least one molecule that is
either a food molecule or is produced by some reaction in
the set. For a set R′ of reactions and a reaction r ∈ R, let
ρ(r) denote the set of reactants of r, let ρ(R) be the union
of the sets of reactants of all reactions r ∈ R′; similarly,
we write π(r) and π(R) for the set of products of r, and
the set of products of all reactions in R′, respectively. The
formal definition of a pseudo-RAF is then as follows:

Definition. Given a CRS Q = (X,R, C, F), a subset R′ ⊆
R is a pseudo-RAF for Q if and only if for every r ∈ R′ the
following two conditions hold:

• ρ(r) ⊆ F ∪ π(R′);
• there exists x ∈ F ∪ π(R′) such that (x, r) ∈ C.

We will use pRAF as shorthand for pseudo-RAF. Figure 2
shows an example of a pRAF which is not an RAF.

The concept of a pRAF is related to that of a chemi-
cal organisation [28]. It is easy to show that every RAF
is a pRAF, but the converse is not true, since pRAFs
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Figure 2 A pseudo-RAF set. A simple example of a pseudo-RAF
(pRAF) with food set F = {f1, f2, f3}. This pRAF fails to be an RAF since
it is not F-generated (since the production of any molecule p1, p2, p3

requires both a food molecule as well as another pi-molecule, so this
system cannot ‘get started’ just from F).

need not be F-generated (as in Figure 2). Because the F-
generated property is necessary for a set of reactions to
be capable of spontaneous generation, it is essential for
an origin of life scenario. For this reason, pRAFs which
are not F-generated are of little direct interest in this set-
ting. However, because being a pRAF is necessary for
being an RAF, and because detecting pRAFs is computa-
tionally more efficient than detecting RAFs (see below),
pRAFs are algorithmically useful for detecting RAFs
inside a large chemical reaction system (see below). Some
basic properties of pRAFs are presented in the following
lemma.

Lemma 1. Consider a CRS Q = (X,R, C, F).

(i) The RAF subsets of R are precisely the F-generated
pRAF subsets of R.

(ii) If R1,R2, . . .Rk ⊆ R are pRAFs, then
⋃k

i=1 Ri is a
pRAF.

Proof. For part (i), suppose that R′ is an RAF. Then R′
is F-generated by definition, and it is also a pRAF (since
every RAF satisfies the definition of a pRAF).

Conversely, suppose that R′ is a pRAF and is F-
generated. By Lemma 3.1 of [29], the latter is equivalent to
clR′(F) = F ∪ π(R′). Now, if we replace F ∪ π(R′) with
clR′(F) in the definition of a pRAF, it follows that R′ is an
RAF.

For part (ii), by the definition of a pRAF and since

ρ

⎛
⎝ k⋃

i=1
Ri

⎞
⎠ =

k⋃
i=1

ρ(Ri) and π

⎛
⎝ k⋃

i=1
Ri

⎞
⎠ =

k⋃
i=1

π(Ri),

we have:

ρ

⎛
⎝ k⋃

i=1
Ri

⎞
⎠ ⊆ F ∪ π

⎛
⎝ k⋃

i=1
Ri

⎞
⎠ .

Finally, since π(Ri) ⊆ F ∪ π
(⋃k

i=1 Ri
)

for 1 ≤ i ≤ k,

each reaction in
⋃k

i=1 Ri is catalysed by some molecule in
F ∪ π

(⋃k
i=1 Ri

)
. Hence

⋃k
i=1 Ri is a pRAF. �

It follows from part (ii) that if a CRS contains a pRAF,
then it contains a unique maximum pRAF, equal to the
union of all the (finitely many) pRAF subsets. A similar
property holds for RAF sets [9].

Finding a maximum pRAF turns out to be particularly
easy and fast. This is not surprising, since the problem is
formally equivalent to finding a minimal truth assignment
of literals in an instance of the propositional satisfiability
problem HORN-SAT, and it is well known that the latter
can be solved by fast (linear-time) algorithms, such as ‘unit
propagation’. This formal equivalence is described in the
Appendix, but is not required further in this paper.

A modified RAF algorithm
We now show that the basic RAF algorithm can be
improved by alternating the iterations of this algorithm
with the (faster) process of searching for maximum
pRAFs.

Note that every application of f in the basic RAF algo-
rithm requires the computation of the closure of the food
set, which is computationally the most expensive part of
the algorithm [9]. However, because deciding whether or
not a given set of reactions is a pRAF does not require the
closure computation, and because every RAF is a pRAF,
the number of closure computations can be reduced by,
in each iteration, first finding the maximum pRAF in
the system, then checking to see if it is also an RAF.
This alternating process forms the basis of our modified
algorithm.

First, we define p(R) similarly to f (R) but replacing
clR(F) by F ∪ π (R) in the definition. The fixed points
of p are pRAFs. Furthermore, applying p recursively to R
returns the maximum pRAF (if one exists) or the empty
set (otherwise), in the same way that applying f recur-
sively in the basic RAF algorithm returns the maxRAF or
the empty set. For brevity, let fixp(R) denote the result of
applying p recursively to R until either a fixed point or the
empty set is returned, i.e., fixp(R) = pn(R) for the small-
est n > 0 such that pn(R) = pn−1(R) or pn(R) = ∅.
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Similarly, let fixf(R) denote the output from applying f
recursively (that is, fixf(R) is the output of the previous
RAF algorithm applied to R).

Recall that applying f requires the computation of the
closure. Hence, while the basic RAF algorithm makes use
of fixf, the modified algorithm avoids this computation for
as long as possible. Given a CRS Q = (X,R, C, F), the
modified RAF algorithm is as follows:

Algorithm 2 Modified RAF algorithm
1. Set k = 0, and R0 = R;
2. Set R′

k = fixp(Rk);
3. If R′

k = ∅, stop; otherwise, go to step 4;
4. Set Rk+1 = f (R′

k);
5. If Rk+1 = R′

k , return Rk+1; otherwise, increment k
by one and go to step 2.

This algorithm computes the largest pRAF within the
current set of reactions (step 2), then checks to see if it
is also an RAF, throwing out any reactions that do not
conform to the RAF definition (step 4). If any reactions
are thrown out, the algorithm iterates, searching for the
largest pRAF within the reduced set of reactions. If at any
point there are no reactions left, the algorithm stops (steps
3); otherwise, it terminates only when it discovers an RAF
(step 5). In order to show that the modified algorithm ter-
minates in exactly the same way as the basic algorithm, it
remains to be shown that this RAF is guaranteed to be the
maxRAF, for which we will require the monotonicity of f
and p, presented in the following lemma. The final result
then follows.

Lemma 2. (Monotonicity) Given a CRS Q=(X,R, C, F),
the functions f : 2R → 2R and p : 2R → 2R are mono-
tonic.

Proof. Consider two subsets R1,R2 ⊆ R such that
R1 ⊆ R2. Clearly, clR1(F) ⊆ clR2(F) and hence:

f (R1) = {r ∈ R1 : ∃(x, r) ∈ C with ρ(r) ∪ {x} ⊆ clR1(F)}
⊆ {r ∈ R2 : ∃(x, r) ∈ C with ρ(r) ∪ {x} ⊆ clR1(F)}
⊆ {r ∈ R2 : ∃(x, r) ∈ C with ρ(r) ∪ {x} ⊆ clR2(F)}
= f (R2).

(1)

A similar argument (replacing clR1(F) with F∪π(R1), and
similarly for R2), shows that p(R1) ⊆ p(R2), as required.
�

Theorem 1. The modified RAF algorithm returns the
maxRAF if R contains an RAF set; otherwise, it returns the
empty set.

Proof. Suppose that R contains no RAF sets. Then there
are no non-empty fixed points of f ; hence the algorithm
terminates only after removing all reactions, returning the
empty set.

Next suppose that R contains an RAF set. It then con-
tains a unique maxRAF set, which we will denote by Rm.
Clearly we have Rm ⊆ R. Now since Rm is a fixed point
of both f and p, and by Lemma 2, we have:

Rm = f (Rm) ⊆ f (R).

Similarly,

Rm = pn(Rm) ⊆ pn(R)

for any n ≥ 0, and hence Rm ⊆ fixp(R). Applying the
same arguments recursively shows that Rm is preserved
after an arbitrary number of alternating applications of
fixp and f to R.

The algorithm terminates on the first value of k for
which f (Rk) = Rk . This terminal set of reactions Rk is
therefore an RAF by definition and, by the above, we have
Rm ⊆ Rk . Finally, since Rm is the maxRAF, we must have
Rm = Rk , as required. �

We have implemented the modified RAF algorithm;
the pseudo-code of this implementation is provided in
the Appendix. Briefly, to apply the modified algorithm in
practice, for each molecule type it is necessary to keep
track of the number of reactions in Rk that produce it (i.e.
of how many reactions in Rk a given molecule type is a
product). This way it will be possible to check whether a
reaction in Rk still conforms to both properties of a pRAF:
all of a reaction’s reactants and at least one of its catalysts
need to be produced by one or more reactions in Rk . If
this is not the case for some reaction r ∈ Rk , then this
reaction r is removed in one of the pruning steps (step
2 or 4 in the modified algorithm), and the corresponding
counts of the products of r are reduced accordingly (i.e.,
there is now one reaction less that produces each of r’s
products).

In fact, in the actual implementation we only count
the number of “active” reactions that produce a given
molecule type. The “active” reactions are those reactions
in Rk that are used at least once while computing the
closure of the food set. Thus our implementation is an
even stronger modification than the pRAF idea described
above, although it is largely based on this idea.

In conclusion, even though we expect that the total
number of calls to the closure computation procedure is
reduced in the modified algorithm, its implementation
does require some additional overhead (i.e., keeping track
of these counts).

Algorithm performance
A simple example shows that the modified algorithm can
be substantially more efficient than the original algorithm.
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Consider a linear chain of reactions, as shown in Figure 3.
Each reaction transforms one molecule type xi into the
next one xi+1 in the chain, and each molecule xi cataly-
ses the reaction that creates the previous molecule xi−1,
with x0 being a food molecule. However, note that the final
reaction, which creates xN , is not catalysed and therefore
this reaction network does not form an RAF.

The basic RAF algorithm requires N − 1 calls to the clo-
sure computation procedure to discover that there is no
RAF set within this reaction network. However, the mod-
ified algorithm requires only one call to this procedure,
as there does not exist a pRAF in this reaction network
either. Applying both algorithms to an instance of this lin-
ear chain network with N = 10, 000 takes 23.3 seconds
for the original algorithm and only 4.9 seconds for the
modified algorithm. So, in this case, there is a clear differ-
ence in running time, a factor of 4.76. However, it is also
possible to construct hypothetical examples in which the
number of closure computations made by the modified
algorithm, although less in absolute number, is still of the
same order as in the basic algorithm. For such examples
neither algorithm significantly outperforms the other.

We also compared the performance of the basic and
modified algorithms (their running times and the average
number of calls to the closure computation procedure)
on a particular set of 100 instances of the binary polymer
model with n = 12, t = 2, and p(x, r) = 0.00001609 (with
this value of p(x, r), there is about a 50% chance that an
instance of the model contains an RAF set). Table 1 shows
the results. As expected, the average number of calls to
the closure computation procedure is reduced; indeed, by
a factor of 1.78. Furthermore, the variance in this num-
ber of calls is also reduced to almost half. However, the
total running time is the same between the two algo-
rithms. When the catalysts are assigned purely randomly,
as in the standard binary polymer model, the additional
overhead in the modified algorithm (i.e., keeping track of
the number of “active” reactions that create each reac-
tant and catalyst in the current set) apparently cancels
out the gain in speed obtained by the smaller number of
closure computations, at least for this value of n. Also
note that the average running time of the original RAF
algorithm on random instances of the binary polymer
model was already sub-quadratic [9], so we cannot expect
too much of an improvement on the standard polymer
model.

Table 1 The runtime (in seconds) and average number of
calls to the closure computation procedure for the two
algorithms on the same set of 100 instances of the binary
polymer model (with n = 12)

Runtime (sec) Avg. closure calls
(st.dev.)

Basic algorithm 438 19.05

(13.52)

Modified algorithm 439 10.69

(7.42)

In previous work, we also applied the RAF algorithm to
real reaction networks, such as a system of catalytic RNA
molecules [26] and the metabolic network of E. coli [27].
However, these networks are too small to get useful statis-
tics for comparing running times (which are around 30ms
for these networks). Thousands or even millions of reac-
tions are required to get useful statistics, which can easily
be done with the binary polymer model, as the number of
reactions grows exponentially with increasing n.

In short, the above results show that the modified algo-
rithm can be expected to be not worse than the basic
one in terms of running time, and better in terms of the
number of calls to the closure computation procedure.
Depending on the particular structure of the reaction/
catalyst assignments, there can actually be a significant
improvement in average running time as well.

Sampling irreducible RAFs
An irrRAF is an RAF set for which no proper subset is
an RAF set. Thus, irrRAFs represent the smallest possible
RAF sets. In [21], it was shown that, in principle, there can
be exponentially many irrRAFs within a maximum RAF.
In general, therefore, it is not possible to enumerate all
irrRAFs that exist within a given CRS efficiently. Further-
more, in [29], it was shown that even finding a smallest
irrRAF is an NP-complete problem.

Despite their computational intractability, it would still
be useful to have a better idea of the (minimum) num-
ber of irrRAFs that can be expected to exist within a
given CRS. This is relevant in the context of the possible
evolvability of autocatalytic sets [15,21]. In [29], a search
algorithm was introduced to sample irrRAFs randomly
within a given RAF set R, which was subsequently used

Figure 3 An easy CRS for the modified RAF algorithm. An example of a CRS for which the modified algorithm clearly outperforms the basic one.
The original algorithm requires N − 1 calls to the closure computation procedure, whereas the modified algorithm requires only one call. x0 is a food
molecule.
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in [20] to get more insight into the size distribution of
irrRAFs. Briefly, this algorithm, which is an extension of
the basic RAF algorithm, works as follows (see [29] for
details):

Algorithm 3 irrRAF search algorithm
1. Randomly reorder the reactions ri in the given RAF set

R.
2. For each next reaction ri ∈ R, remove ri and apply the

RAF algorithm to R − {ri}, resulting in a subRAF
R′ ⊂ R.

(a) If R′ = ∅, return ri to R.
(b) Otherwise, replace R with R′.

3. Go back to step 2, until all reactions have been
considered for removal.

4. Return the resulting irrRAF set R.

Note that the particular irrRAF that is found by this
algorithm depends on the order in which the reactions in
R are considered for removal. Therefore, the reactions in
the given RAF R are randomly reordered (step 1) each
time the algorithm is applied, so a (possibly) different
irrRAF may be found each time.

It would seem that smaller irrRAFs should have a higher
probability of being found by this irrRAF search algorithm
than larger irrRAFs, since larger irrRAFs are more likely
to be destroyed by the deletion of a (random) reaction
(step 2). This bias in probability according to irrRAF size
is easily seen to hold in some situations. For example, if
there are just two irrRAFs, then the smaller one will be
found with higher probability. If more than two irrRAFs
are disjoint, this will also hold. However, it does not hold
in general, as the following counterexample shows.

Example: Suppose a CRS with 12 reactions consists
of precisely four RAFs (which are therefore irrRAFs),
A, B, C, D where:

A = {r1, r2, r3, r4}; B = {r5, r6, r7, r8}; C = {r9, r10, r11};
D = {r9, r10, r12} .

Note that there is an overlap of two reactions (r9 and r10)
in the pair of irrRAFs C and D. A careful case analysis
reveals that the probabilities that the irrRAF search algo-
rithm terminates at each one of these irrRAFs is given as
follows:

Pr[ A] = Pr[ B] = 0.25108225 . . . and
Pr[ C] = Pr[ D] = 0.24891775 . . .

Here, the probability of finding any larger irrRAF is
higher than that of finding any smaller irrRAF, because
the smaller ones have an overlap in the reactions they con-
sist of. Therefore, the probability of finding irrRAFs of a

certain size seems to depend on the amount of overlap
between the various irrRAFs.

Similarly, one could ask what the probability is that the
same irrRAF will be found more than once when applying
the irrRAF search algorithm a certain number of times,
especially since, in general, it cannot be known how many
there are in total. However, the statistical test described
next can give at least some idea of the minimum number
of irrRAFs that can be expected to exist within an RAF
set.

A probable lower bound on the number of irrRAFs
The following is an easily applied hypothesis test on the
number of irrRAFs, that has < 1% Type 1 error. Randomly
and independently apply the irrRAF search algorithm S
times (we will assume that S is at least 30 or so). Now con-
sider the following null hypothesis H0 and its alternative
Ha:

H0: the total number of irrRAFs present in the CRS is
at most S2/10.
Ha: the total number of irrRAFs present in the CRS is
more than S2/10.

Test: Reject H0 in favour of Ha if all S irrRAFs returned
by the search algorithm are different.

Saying this test has < 1% Type 1 error means that if H0
were true, then one would reject H0 in favour of Ha no
more than once in 100 times. This holds regardless of how
many irrRAFs there are and how likely each one is to be
found by the irrRAF search algorithm (i.e., it is indepen-
dent of the amount of overlap there is between various
irrRAFs). So, if sampling S = 1000 irrRAFs with the given
search algorithm found them all to be different, one would
reject H0 and accept Ha which (in this case) says that there
are at least 100,000 irrRAFs.

The justification for this test is simply by appeal to a gen-
eralisation of the well-studied “birthday problem” [30] and
its Poisson approximation. In the classic birthday prob-
lem we ask what is the probability that among a sample
of S people at least two have a birthday on the same day
of the year. To solve this one focuses on the complemen-
tary event: that all the S people have different birthdays.
Here we consider the slightly more general setting where S
samples are drawn from N types (of objects) with type i is
sampled with probability pi on each draw (this specialises
to the birthday problem when ‘types’ refers to ‘day of the
year’, N = 365, and pi is the proportion of people born on
day i). Then the probability P that S independent samples
will comprise S different types is, at most, the correspond-
ing probability P′ for the special case where pi = 1/N for
all i [30] – this is useful since the distribution of probabili-
ties of sampling different irrRAFs no doubt varies in some
complex way, but the upper bound P′ is robust to this
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variation. This latter probability P′ is well approximated
by exp(−λ) for λ = (S

2
)
/N , and if N ≤ S2/10 we have

λ > 5(1 − 1
N ) ≈ 5. Thus P ≤ P′ ≤ exp(−5) < 0.01, as

claimed.
We applied this hypothesis test to instances of the binary

polymer model with n = 8, t = 2 and p(x, r) = 0.00041
(which gives a probability Pn ≈ 0.5 of having an RAF set in
a random model instance), using the irrRAF search algo-
rithm described above. Taking 20 model instances that
contain an RAF set, and with irrRAF samples of size S =
10, 000, all irrRAFs within each sample turn out to be dif-
ferent for all of these 20 instances. Even with a sample size
of S = 50, 000, for most instances, all irrRAFs in the sam-
ple are different. There are some instances (less than half )
where the irrRAFs in the sample are not all different, but
even in those cases, there are only one or two equal pairs
(out of a possible almost 2.5 billion pairs).

These results thus suggest that in most of these model
instances we can expect, with 99% confidence, at least
50, 0002/10 = 2.5 × 108 irrRAFs to exist. Given that the
average maxRAF size in these instances is 375 reactions,
this is an astonishingly large number. It seems to indi-
cate that having possibly exponentially many irrRAFs, as
shown in [21], is not just an unlikely theoretical construct.

The amount of overlap in irrRAF samples
Obviously, with this many irrRAFs existing within one
maxRAF, there must be some overlap among them. The
average irrRAF size in our model instances is about 175
reactions, slightly less than half of the average maxRAF
size. Thus, they cannot all be completely disjoint. As men-
tioned above, this is relevant in the context of evolvability
of autocatalytic sets, which requires the existence of mul-
tiple irrRAFs with a sufficient amount of variability. If all
irrRAFs are mostly the same, then there is little room for
different types of behavior (i.e., “attractors”). However, if
the amount of similarity between irrRAFs is limited, then
this can promote evolvability within the given chemical
system [15,21].

To get more insight into the amount of similarity
between irrRAFs we introduce two statistics: the overlap
O and the coverage C, which measure (in different but
related ways) the fraction of reactions in an irrRAF that
are shared with other irrRAFs in the sample.

First, define the pairwise overlap Oij between two
irrRAFs Ri and Rj as the number of reactions they have
in common, normalized by dividing by the number of
reactions in the first irrRAF Ri:

Oij = |Ri ∩ Rj|
|Ri| .

Thus, the pairwise overlap Oij is the fraction of reactions
in irrRAF Ri that are shared with irrRAF Rj. If Ri and

Rj are disjoint, then Oij = 0. If Ri is a subset of Rj, then
Oij = 1. Note that this measure is not symmetric, i.e., in
general Oij �= Oji.

Next, the irrRAF overlap Oi of irrRAF Ri is the average
of the pairwise overlap values Oij over all irrRAFs Rj that
are different from Ri:

Oi = 1
S − 1

S∑
j=1,j �=i

Oij,

where S is the total number of irrRAFs in the sample.
This quantity can also be interpreted as follows. For any
reaction r in Ri let pi(r) denote the proportion of the
other S − 1 irrRAFs that contain r. Then Oi is simply the
average of these proportions across all reactions in Ri. To
see this, observe that

pi(r) = 1
S − 1

∣∣{j ∈ {1, . . . , S} − {i} : r ∈ Rj
}∣∣

and so the average value of pi(r) over all r ∈ Ri can be
written as:

1
|Ri|

∑
r∈Ri

pi(r) = 1
|Ri|

∑
r∈Ri

1
S − 1

∑
j=1,j �=i

|{r} ∩ Rj|.

Interchanging the order of summation, and observing
that

∑
r∈Ri |{r} ∩ Rj| = |Ri ∩ Rj|, we arrive at the above

expression for Oi.
It could also be useful to measure the proportion of the

reactions in Ri that appear in at least one of the other S −
1 irrRAFs. We call this the irrRAF coverage Ci, which is
defined as:

Ci = | ⋃S
j=1,j �=i(Ri ∩ Rj)|

|Ri| .

Notice that the numerator term for Ci can also be writ-
ten as

∣∣∣Ri ∩
(⋃S

j=1,j �=i Rj
)∣∣∣, and that Ci ≤ (S − 1)Oi, by

Boole’s inequality. Comparing Oi and Ci sheds light on the
pattern of intersection of Ri with the other S − 1 irrRAFs.
For example, if each of these irrRAFs intersects Ri in only
a small proportion of its reactions, but collectively they
contain most reactions in Ri then Oi will be small while Ci
will be close to 1. On the other hand, if the other irrRAFs
mostly intersect Ri in the same subset of reactions, then
Oi and Ci will be similar.

Finally, the average overlap O is the average of Oi over
the entire sample of irrRAFs:

O = 1
S

S∑
i=1

Oi.

The average overlap is thus the average (or expected)
fraction of an irrRAF’s reactions that it shares with an
(arbitrary) other irrRAF in the sample, or, equivalently, the
average fraction of other irrRAFs in the sample that also
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contain some (arbitrary) reaction from a given irrRAF.
Similary, the average coverage C is the average of Ci over
the entire sample:

C = 1
S

S∑
i=1

Ci.

The average coverage is thus the average (or expected)
fraction of an irrRAF’s reactions that appear in at least one
other irrRAF in the sample.

The overlap statistic is illustrated in Figure 4 for a ran-
dom sample of S = 100 irrRAFs from an instance of the
binary polymer model with the same parameter values as
in the previous subsection. Each cell in this grid repre-
sents the pairwise overlap Oij between two irrRAFs Ri
and Rj as a grey-scale value, going from white (no overlap)
to black (full overlap). The minimum of all pairwise over-
lap values Oij in this sample is 0.258 and the maximum
value is 0.795. So, a given irrRAFs Ri shares anywhere
between 25% and 80% of its reactions with an arbitrary
other irrRAF Rj. The irrRAF overlap Oi of irrRAF Ri is
the average of the cells in row i (excluding the diagonal ele-
ment). The average overlap O is the average of these row

averages (or, equivalently, the average over all cells except
the ones on the diagonal).

Next, we calculated the average overlap O and also the
average coverage C on model instances with the same
parameter values, but using a larger sample size S. The
average overlap O for S = 1, 000 is O = 0.539. So, on
average, an arbitrary irrRAF Ri shares just over half of its
reactions with an arbitrary other irrRAF Rj from the same
sample. Equivalently, any reaction r from a given irrRAF
Ri also appears in just over half of the other irrRAFs in the
sample. The average coverage C, though, is almost equal
to one: C = 0.999. So, almost every reaction r from any
given irrRAF Ri also appears in at least one other irrRAF
Rj from the sample.

However, it turns out that the average overlap O
depends partly on the sizes of the irrRAFs relative to
the maxRAF they are part of. As we already know from
previous studies [20,29], the average size of maxRAFs
increases linearly with an increasing level of catalysis (i.e.,
an increasing value of p(x, r) for a given maximum bit
string length n), while the average size of irrRAFs does
not increase. Consequently, one would expect a smaller
amount of overlap between irrRAFs for larger values
of p(x, r).

irrRAF j

irr
R

A
F

 i

20

40

60

80

20 40 60 80

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4 The pairwise overlap between irrRAFs. The pairwise overlap values Oij for a random sample of 100 irrRAFs. The grey-scale indicates the
amount of overlap (from 0 to 1) between two irrRAFs Ri and Rj .
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Indeed, calculating the average overlap O for instances
of the binary polymer model with p(x, r) = 0.00045
(which gives a probability Pn ≈ 1 of having an RAF set
in a random model instance), again with S = 1, 000, gives
a value of O = 0.411, a significantly smaller value. In
fact, the average overlap O is clearly (negatively) corre-
lated with the size of the maxRAF, as Figure 5 shows. In
this figure, the average overlap O vs. the maxRAF size is
plotted for 20 model instances with p(x, r) = 0.00041 and
20 instances with p(x, r) = 0.00045 (40 points in total).

These results indicate that there is only a limited
amount of overlap between pairs of irrRAFs. An arbitrary
irrRAF possibly shares as little as 25% of its reactions
with another irrRAF from the sample, and no more than
80%, with an average of 50% or less (depending on the
value of p(r, x)). This implies that there is indeed suffi-
cient variability available among irrRAFs for the potential
evolvability of autocatalytic sets [15,21].

For comparison, we also calculate the exact average
overlap O for the example of an RAF set that contains
an exponential number of irrRAFs, as described in [21]
(Theorem 1(1)). Recall that this example of an RAF con-
tains N pairs of reactions ri and r′

i, i = 1, . . . , N , and any
irrRAF contains either ri or r′

i for each i. Therefore, we
have 2N reactions in the RAF set and there are 2N pos-
sible irrRAFs (all of size N , but all being different by at
least one reaction). This means that any (arbitrary) pair
of irrRAFs Ri and Rj can have k reactions in common,

where k = 0, . . . , N − 1 (if they would have N reactions
in common, then Ri = Rj). Furthermore, there are

(N
k
)

irrRAFs Rj with which a given irrRAF Ri can have k reac-
tions in common. So, by a simple combinatorial argument,
the irrRAF overlap Oi for a given irrRAF Ri is:

Oi = 1
2N − 1

N−1∑
k=0

k
N

(
N
k

)
= 2N−1 − 1

2N − 1
,

where the second equality exploits the identity:∑N
k=0 k

(N
k
) = N2N−1. Since Oi is the same for each

i = 1, . . . , N , the average overlap O (which is the average
of all values of Oi) is also the same. Note that this quantity
converges to O = 0.5 exponentially fast with increasing
N . For example, for N = 3, we have O = 0.428571 . . .,
while for N = 10, we already have O = 0.4995 . . ..

As a final remark on the issue of sampling irrRAFs, it
would be interesting to perform the hypothesis test for
the number of irrRAFs on model instances with larger
values of n. However, the experiments described above
with n = 8 and a sample size of S = 50, 000 are already
pushing current computational limits, even when using
a large computer cluster. We know from previous work
that the average size of maxRAFs (and also of irrRAFs)
grows exponentially with increasing n. This means that
even larger sample sizes would be required to find sam-
ples where not all irrRAFs are different. So, at present we
do not expect to be able to go much beyond these limits.

Figure 5 The average overlap vs maxRAF size. A scatter plot of the average overlap O vs. the maxRAF size for 20 binary polymer model instances
with p = 0.00041 and 20 instances with p = 0.00045 (n = 8 in both cases).
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Systems that allow inhibition
The definition of a CRS is readily generalised to one which
allows inhibition as well as catalysis. For example, we can
prescribe a set I of ordered pairs (x, r), where (x, r) ∈ I
means that molecule x ∈ X inhibits the reaction r ∈ R.
Then, a CRS that allows inhibition is a tuple (X,R, C, I, F).
The definition of an RAF R′ can then be suitably extended
to require, in addition, that no reaction in R′ is inhib-
ited by any molecule in clR′(F). We refer to such an
“uninhibited” RAF as a u-RAF.

In [16], it was shown that the problem of finding a u-
RAF within an inhibitory CRS is an NP-hard problem.
While it is possible to formulate heuristic algorithms to
search for u-RAFs, here, we take a more precise approach
that exploits some theory developed in [21].

Suppose we have a CRS Q = (X,R, C, I, F) that allows
inhibition. First, we may assume, without loss of gener-
ality, that R contains no reactions that are inhibited by
any element of F (if any such reactions exist, then we may
delete them, since no such reaction can be part of any u-
RAF). Let XI denote the subset of X consisting of those
molecules that inhibit one or more reactions. For a sub-
set K of XI , consider the subset R−K of R that consist of
all reactions in R that do not have any product in K and
which, in addition, are either not inhibited at all or are only
inhibited by elements in K .

Let QK denote the CRS consisting of (X,R−K , C, F).

Proposition 1. Q has a u-RAF if and only if there is a
subset K of XI for which QK has an RAF. Moreover, each
maximal u-RAF ofQ is a maxRAF ofQK for some K. Thus,
the number of maximal u-RAFs of Q is at most |{K ⊆ X :
QK has an RAF }|.

Proof. For each x ∈ XI , let Rx denote the set of reac-
tions in R that x inhibits (i.e., Rx = {r ∈ R : (x, r) ∈ I}).
Observe that R−K := R1(K) ∩ R2(K), where

R1(K) := {r ∈ R : π(r) ∩ K = ∅}, and R2

(K) := {r ∈ R : r ∈ Rx ⇒ x ∈ K}.
First we establish a preliminary result:

(*) For any subset K of XI , if R′ ⊆ R−K then no
reaction in R′ is inhibited by any molecule in
clR′(F) − F .

To see this, suppose this last statement did not hold (we
will derive a contradiction). Then there would be some
reaction r in R′ which is inhibited by a molecule x that
is produced by some reaction r′ ∈ R′ (i.e., r ∈ Rx, with
x ∈ π(r′)). Since r ∈ R2(K), it follows that x ∈ K , and
since r′ ∈ R1(K), it follows that π(r′) ∩ K = ∅. How-
ever, this is not possible, since x ∈ K and x ∈ π(r′). This
establishes (*).

Next we establish the following result:

(**) R′ is a u-RAF for Q if and only if R′ is an RAF for
QK , where K = XI − (⋃

r∈R′ π(r)
)

.

To establish this, suppose that R′ ⊆ R−K is an RAF
for Q, for K as described. Then by (*), R′ is also a u-RAF.
Conversely, suppose that R′ is a u-RAF for Q, and let K =
XI − (⋃

r∈R′ π(r)
)

. For any r ∈ R′, we have π(r) ∩ K = ∅
and so r ∈ R1(K), by definition of K . Moreover, if r ∈ R′
and r ∈ Rx, for some x ∈ XI , then since R′ is a u-RAF, x
cannot be an element of

⋃
r∈R′ π(r) and so x ∈ K . Thus

r ∈ R2(K). In summary, every r ∈ R′ is an element of
R1(K) and of R2(K), so R′ is an RAF that forms a subset
of R1(K) ∩ R2(K) = R−K . This justifies (**).

We can now readily establish Proposition 1. For the
first part, note that the ‘only if ’ direction follows imme-
diately from the ‘only if ’ part of (**). For the ‘if ’ part, if
R′ ⊆ R−K is an RAF for Q for some subset K of XI ,
then R′ is also a u-RAF, by (*). To establish the second
part of Proposition 1, suppose R′ is a maximal u-RAF for
Q. Then, by (**), R′ is a subset of R−K for K = XI −(⋃

r∈R′ π(r)
)

. Moreover, the maximal RAF R′′ for QK is
also a u-RAF by (*), and since R′′ contains R′, it follows
by the assumption that R′ is a maximal u-RAF of Q that
R′′ = R′. The final inequality for the number of u-RAFs
relies on the fact that if QK has an RAF, then QK contains
a unique maximum RAF.

Note that our definition of a u-RAF implies a very strong
notion of inhibition: a reaction that is (potentially) inhib-
ited by some molecule is always excluded from being part
of a u-RAF set if that molecule is produced by some reac-
tion in that set. In reality, if an inhibitor is present in only
very small concentrations, any reaction it might inhibit
could possibly still happen at a substantial rate if a high
enough concentration of its reactants (and catalysts) are
present. Moreover, inhibitors do not necessarily always
have a negative impact on a reaction system, as they
can (and indeed do) play an important role in biological
regulation.

However, given this strong notion of inhibition as a
starting point, Proposition 1 provides a feasible way to
determine if a CRS that allows inhibition contains a u-
RAF and, if so, to find maximal ones, provided that XI
is small (by applying the RAF algorithm across all the
subsets of XI ).

Application to the binary polymer model
We have implemented an extension of the RAF algorithm
to search for u-RAFs as follows. Given a CRS Q =
(X,R, C, I, F) that allows inhibition, for each of the 2|XI |
possible subsets K ⊆ XI we construct R−K by removing
all reactions from R that either:
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1. have a product that is in the subset K , or
2. are inhibited by one or more molecule types that are

not in the subset K .

We then apply the usual RAF algorithm to QK =
(X,R−K , C, F). Each time the RAF algorithm returns a
non-empty set R′, this is taken as a u-RAF of Q.

To apply this algorithm, we use an extension of the
binary polymer model that also includes inhibition. After
constructing an instance Q = (X,R, C, F) of the “stan-
dard” model (using the parameters n, t and p(x, r)), we
include inhibition as follows:

1. Choose a random subset XI of size m from X − F
(i.e., no food molecules can be inhibitors).

2. For each pair (x, r) with x ∈ XI and r ∈ R, assign
(x, r) to I (the inhibition set) with some (identical
and independent) probability q(x, r).

Using the parameter values n = 10, t = 2, p(x, r) =
0.0000792 (giving a probability of about 0.5 of finding reg-
ular RAFs), and m = 10 (i.e., 10 inhibitors), we applied
the u-RAF algorithm to several instances of this extended
binary polymer model allowing inhibition. Note that in
this case, there are 210 = 1024 possible subsets K , which
means we need to apply the “regular” RAF algorithm that
many times on each instance.

The results strongly depend on the value for the param-
eter q(x, r) (the probability that an inhibitor actually
inhibits an arbitrary reaction). Clearly, if q(x, r) is too low,
then almost every (regular) RAF R′ is also a u-RAF. The
probability that a (random) inhibitor (of which there are
only m = 10) is in the closure clR′(F) and also inhibits
one or more reactions in the (regular) maxRAF R′ is sim-
ply too small. Indeed, when q(x, r) = p(x, r), the largest
u-RAF found (among the 1024 possible ones) is always
the same size as the (regular) maxRAF. Since we have only
removed reactions from R to find u-RAFs and have not
added any, this means that this largest u-RAF must be the
same as the maxRAF (c.f. Proposition 1 (iii)).

However, when q(x, r) is larger, inhibitors do have an
impact on the RAF sets. For example, using q(x, r) =
10 × p(x, r), the average maxRAF size is 1428 reactions
(averaged over 10 model instances), while the largest u-
RAF found is, on average, 1417 reactions (i.e., 11 reactions
less than the maxRAF). With q(x, r) = 100 × p(x, r), the
average maxRAF size is 1439, while the largest u-RAF is
of size 1378 (i.e., 61 reactions less than the maxRAF, again
averaged over 10 model instances). In fact, on two addi-
tional instances (not included in the above average), there
was a maxRAF but no u-RAFs; none of the 1024 possible
subsets R−K contained an RAF set.

Note that there is not necessarily just one maximal u-
RAF (as opposed to always having only one “regular”

maxRAF). In fact, u-RAFs of different sizes are found
within the set of 2m possible u-RAFs. Figure 6 shows
a histogram of the 210 = 1024 u-RAF sizes obtained
for one particular model instance with q(x, r) = 10 ×
p(x, r). In this case, 256 subsets K ⊂ XI result in an
empty RAF (and therefore no u-RAF), while for the
remaining 768 subsets K , the u-RAF sizes range from
1233 to 1508, whereas the size of the “regular” maxRAF
is 1525.

A full investigation of the impact of inhibition on RAF
sets is beyond the scope of the current paper. Our pur-
pose here is to introduce the notion of u-RAFs and an
extended RAF algorithm for finding them, and to show
that an actual implementation of this u-RAF algorithm
can be successfully applied to reaction networks allow-
ing inhibition. A more detailed study of u-RAFs will be
performed in future work.

Inhibition within a generalized RAF framework
Suppose we have a finite set Y and a partially order (finite
or infinite) set W , together with some functions f : 2Y →
W and g : Y → W . Consider the fixed points of the map
ψ : 2Y → 2Y where ψ(A) := {y ∈ A : g(y) ≤ f (A)}, other
than ∅. We are particularly interested in the setting where
f is monotonic (i.e., where A ⊆ B ⇒ f (A) ≤ f (B)). We
say that a subset A of Y is gf -compatible if A is non-empty
and ψ(A) = A.

In [31], we showed that the RAFs in CRSs can be
described by gf -compatibility. The fact that there is a
polynomial time algorithm to find an RAF (if it exists,
or else to determine that none exists) boils down to this
ability to characterise RAFs by gf -compatibility, where
f is monotonic and computable in polynomial-time,
and the set of reactions and catalysts is finite. This is
because the general problem of finding a gf -compatible
set (if it exists) can be solved in general polynomial time
when Y is finite and f monotonic. In [31], we showed
how other problems (including a toy problem in eco-
nomics) could be formulated within this more general
framework.

If we allow inhibition it is also possible to describe
RAFs as gf -compatible sets, however the function f will
generally not be monotonic. Briefly, we modify the con-
struction as outlined in [31], where we work over the
extended set of reactions (deleting any reaction that is not
catalysed, and replacing any reaction that is catalysed by
k > 1 molecule types by k reactions where each cata-
lyst is treated as a reactant of a corresponding reaction)
by setting Y = R, W = 2X and, for A ∈ 2Y , f (A) =
clA(F) and g(r) = ρ(r) (the ‘reactants’ of r (including a
catalyst)). Note that in the definition of f (A), clA(F) is the
set of molecules present in F or constructible from F by
a sequence of reaction from A, regardless of whether or
not the catalyst for reactions are available. In that setting
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Figure 6 The size distribution of u-RAFs. A histogram of the u-RAF sizes for one particular instance of the binary polymer model that allows
inhibition. The largest u-RAF is of size 1508, while the “regular” maxRAF of this instance is of size 1525.

the RAFs in the CRS correspond to the gf -compatible
subsets of R.

Now, to allow inhibition, we simply replace W = 2X

with W = 2X × 2X (partially ordered by (w1, w2) ≤
(w′

1, w′
2) ⇔ w1 ⊆ w′

1 and w2 ⊆ w′
2) and replace f with

f (A) = (clA(F), X − clA(F)), and g(r) = (ρ(r), in(r)),
where in(r) denotes the subset of molecular species in
X that inhibits reaction r. It follows that the u-RAFs
in this CRS correspond to the gf -compatible subsets
of R.

Conclusions
The modified RAF algorithm, based on the notion of
pseudo-RAFs, clearly improves on the number of calls
to the closure computation procedure, which is com-
putationally the most expensive part of the algorithm.
Depending on the structure of catalysis in a reaction net-
work, this can also lead to a significant improvement in
the overall running time of the algorithm. However, in a
purely “random” system (as in the binary polymer model),
the additional overhead of keeping track of the number of
reactions that produce a given molecule seems to cancel
out the gain obtained from a reduced number of closure
computations, at least for polymers of the sizes studied
here. But, in general, the modified algorithm is never
worse – and in some cases it is faster – than the original
version.

Our statistical test on the expected number of irrRAFs
within a reaction network provides strong support for
theexistence of very large numbers of irrRAFs. In
instances of the binary polymer model, even for n = 8
with maxRAF sets of (on average) 375 reactions, is it
highly likely (99% confidence) that at least hundreds of
millions of irrRAFs exist. The overlap statistics show that
these irrRAFs share, on average, about half of their reac-
tions with each other, ranging from 25% to 80% overlap.
In other words, there is always at least 20% (and up to
75%) difference between two arbitrary irrRAFs within the
same reaction network. This large number and the rela-
tively high variability could have important (and positive)
consequences for the possible evolvability of autocatalytic
sets [15,21].

Even though the general problem of finding RAF sets
in systems that also allow inhibition (as well as cataly-
sis) is NP-complete, we have shown that this problem
becomes tractable when the total number of inhibitors
is small (in absolute value). We have implemented and
applied an extension of the basic RAF algorithm to
search for such “uninhibited” RAF sets (u-RAFs), and
have shown that their number and sizes depend largely
on the level of inhibition (i.e., the probability that an
inhibitor actually inhibits any given reaction) relative
to the level of catalysis. So, at least in certain lim-
ited cases, inhibition can be dealt with efficiently. A full
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investigation of u-RAFs will be deferred to future work,
however.

Appendix
pRAFs and HORN-SAT
Given a CRS with food set Q = (X,R, C, F), we describe
how the problem of finding the maximum pRAF subset
of R can be expressed as an instance of the P-complete
problem HORN-SAT (such a connection exists for any
problem in the complexity class P [32], however find-
ing an explicit description is often elusive). Recall that an
instance of HORN-SAT consists of a set of literals, and
a conjunction of Horn clauses. A Horn clause is a dis-
junction of literals involving at most one positive literal.
The minimum truth assignment of literals which satis-
fies the proposition formula corresponds to the (unique)
maximum pRAF subset of R. We present here the con-
struction of an instance of HORN-SAT from any given
CRS.

First, it is necessary to construct the “expanded” CRS
Q̂ = (X, R̂, F) from the given CRS Q = (X,R, C, F).
The purpose of this expansion is to remove the considera-
tion of catalysis when searching for RAFs or pRAFs in the
system, thereby simplifying the process. This is achieved
by considering catalysts as reactants of the reactions they
catalyse. Formally, R̂ is obtained from R as follows: first
delete every uncatalysed reaction. For each remaining r ∈
R, let c(r) denote the set of distinct catalysts of r. Now
replace r by |c(r)| reactions, each of which is identical to
r, with the additions of one of the catalysts as a reactant
(referred to as the nominated catalyst for that reaction).
It was shown in [31] that RAFs in the original CRS corre-
spond to RAFs in the expanded CRS; a similar argument
shows that the expansion process also preserves the pRAF
property.

Now consider the set of literals Y =
{

yr : r ∈ R̂
}

∪{
yx : x ∈ X

}
., Given any subset R′ ⊆ R̂, let

yr =
{
true if r /∈ R′
false if r ∈ R′

for each r ∈ R̂, and let

yx =
{
true if x /∈ F ∪ π(R′)
false if x ∈ F ∪ π(R′)

for each x ∈ X.
We will construct a propositional Horn formula in con-

junctive normal form, for which a truth assignment to
literals in Y corresponds to a pRAF subset of R̂, and the
minimal truth assignment corresponds to the maximum
pRAF. First, note that the definition of a pRAF implies
that for each reaction in r ∈ R̂, r is a member of some

pRAF R′ ⊆ R̂ if and only if every reactant (including
the nominated catalyst) is either a food molecule or is
produced by some reaction in R′ (this condition is both
necessary and sufficient because we are working in the
expanded CRS, so need not consider catalysis explicitly).
This motivates the inclusion of the term

∧
r∈R̂

⎛
⎝

⎛
⎝|ρ(r)|∧

i=1
yxi

⎞
⎠ ∨ yr

⎞
⎠ , (2)

where x1, . . . , x|ρ(r)| are the reactants of r. The Horn
formula must also relate the truth value of the literals
{yx : x ∈ X} to membership of the set F∪π(R′). Motivated
by this, we include the term

∧
x∈X\F

⎛
⎝

⎛
⎝k(x)∨

i=1
yri

⎞
⎠ ∨ yx

⎞
⎠ , (3)

where k(x) is the number of distinct reactions producing
x, and these reactions are r1, . . . , rk(x). Satisfaction of this
term requires that for each non-food molecule x, either
some reaction producing x belongs to R′, or the literal yx
is set to true. Finally, we include the term

∧
x∈F

yx, (4)

which simply requires that the truth value of every food
molecule is set to false, since every food molecule trivially
belongs to F ∪ π(R′).

Writing (2) and (3) in conjunctive normal form and
combining with (4) gives the propositional Horn formula

∧
x∈F

yx
∧

x∈X\F

⎛
⎝

⎛
⎝k(x)∨

i=1
yri

⎞
⎠ ∨ yx

⎞
⎠ ∧

r∈R̂

|ρ(r)|∧
i=1

(
yxi ∨ yr

)
(5)

Any truth assignment satisfying (5) corresponds to a
pRAF in R̂ (i.e. the set {r ∈ R̂ : yr = false} is a pRAF),
hence the unique minimal truth assignment satisfying the
formula corresponds to the maximum pRAF in R̂.

Pseudo-code for the modified RAF algorithm
Variables:

X The set of molecule types.
R′ The current (sub)set of reactions.
x, p A molecule type.

r A reaction.



Hordijk et al. Algorithms for Molecular Biology  (2015) 10:15 Page 15 of 16

x.clF A count of how many reactions in the current
reaction set R′ produce a molecule type x in the
closure.

r.clF Indicates whether a reaction r in the current
reaction set R′ is applied at least once during the
computation of the closure.

clF The closure of the food set as calculated so far.
ρ(r) The reactants of a reaction r.
π(r) The products of a reaction r.
γ (r) The catalysts of a reaction r.

procedure COMPUTECLOSURE
# Reset variables.
for all x ∈ X do

x.clF ← 0
end for
for all r ∈ R′ do

r.clF ← false
end for
# Start with the food set.
A ← F
i ← 1
# Consider each next element in A.
while i ≤ |A| do

x ← A[ i]
# Add to the closure.
clF ← clF ∪ {x}
# For each reaction r for which x
is a reactant...

for all r ∈ R′ for which x ∈ ρ(r) do
# If the reactants of r are in

the current closure,
# and r has not been applied

yet...
if (ρ(r) ⊂ clF ) AND (!r.clF) then

r.clF ← true
# Consider the products of r.
for all p ∈ π(r) do

if p.clF == 0 then
# Add current product.
p.clF ← 1
A ← A ∪ {p}

else
# Increase the count.
p.clF ← p.clF + 1

end if
end for

end if
end for
i ← i + 1

end while
end procedure

procedure APPLYRAF
R′ ← R
computeClosure ()
clComputed ← true
reacsRemoved ← true
while reacsRemoved AND |R′| > 0 do

reacsRemoved ← false
i ← 1
# Consider all reactions in the
current set R′.

while i ≤ |R′| do
r ← R′[ i]
remove ← false
# Check that all reactants are

still produced
# by at least one reaction.
for all x ∈ ρ(r) do

if x.clF < 1 then
remove ← true

end if
end for
# If still necessary, check

that at least one catalyst
# is still produced by at least

one reaction.
if !remove then

remove ← true
for all x ∈ γ (r) do

if x.clF > 0 then
remove ← false

end if
end for

end if
# Remove the reaction, if so

indicated.
if remove then

R′ ← R′ \ {r}
reacsRemoved ← true
clComputed ← false
# Decrease the counts of the

products.
if r.clF then

for all p ∈ π(r) do
p.clF ← p.clF − 1

end for
r.clF ← false

end if
else

i ← i + 1
end if

end while
# Only recompute the closure if

necessary.
if !reacsRemoved AND !clComputed then

computeClosure ()
reacsRemoved ← true
clComputed ← true

end if
end while

end procedure



Hordijk et al. Algorithms for Molecular Biology  (2015) 10:15 Page 16 of 16

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MS developed the theory for Sections “Sampling irreducible
RAFs”–“Conclusions”, JS developed the theory for Section “Pseudo-RAFs and
their use in a modified RAF algorithm”, and WH implemented all algorithms
and models, and performed and analysed the simulations. All three authors
contributed to the writing of the paper and approved the final version.

Acknowledgments
We thank the Allan Wilson Centre, New Zealand, for helping fund this work.
We also thank the anonymous reviewer for numerous helpful suggestions on
an earlier version of this manuscript. This research was also partially supported
by the supercomputing infrastructure of the NLHPC (ECM-02), Universidad de
Chile, Santiago, Chile.

Author details
1SmartAnalytiX.com, Lausanne, Switzerland. 2Biomathematics Research
Centre, Department of Mathematics and Statistics, University of Canterbury,
Christchurch, New Zealand.

Received: 26 May 2014 Accepted: 26 March 2015

References
1. Kauffman SA. Cellular homeostasis, epigenesis and replication in randomly

aggregated macromolecular systems. J Cybernet. 1971;1(1):71–96.
2. Kauffman SA. Autocatalytic sets of proteins. J Theor Biol. 1986;119:1–24.
3. Kauffman SA. The Origins of Order. Oxford University Press: New York;

1993.
4. Gánti T. The Principles of Life. Oxford University Press: New York; 2003.
5. Eigen M, Schuster P. The Hypercycle. Springer: Berlin; 1979.
6. Maturana H, Varela F. Autopoiesis and Cognition: The Realization of the

Living. Dordrecht: Reidel; 1980.
7. Dyson FJ. Origins of Life. Cambridge University Press: Cambridge; 1985.
8. Steel M. The emergence of a self-catalysing structure in abstract

origin-of-life models. Appl Math Lett. 2000;3:91–5.
9. Hordijk W, Steel M. Detecting autocatalytic, self-sustaining sets in

chemical reaction systems. J Theor Biol. 2004;227(4):451–61.
10. Hordijk W, Steel M, Kauffman S. Autocatalytic sets: The origin of life,

evolution, and functional organization In: Pontarotti P, editor.
Evolutionary Biology: Exobiology and Evolutionary Mechanisms. Springer:
Berlin Heidelberg; 2013. p. 49–60.

11. Hordijk W, Kauffman SA, Steel M. Required levels of catalysis for
emergence of autocatalytic sets in models of chemical reaction systems.
Int J Mol Sci. 2011;12(5):3085–101.

12. Hordijk W, Steel M. Predicting template-based catalysis rates in a simple
catalytic reaction model. J Theor Biol. 2012;295:132–8.

13. Kayala MA, Azencott C-A, Chen JH, Baldi P. Learning to predict chemical
reactions. J Chem Inform Model. 2011;51:2209–22.

14. Filisetti A, Graudenzi A, Serra R, Villani M, De Lucrezia D, Füchslin RM,
et al. A stochastic model of the emergence of autocatalytic cycles. J Syst
Chem. 2011;2:2.

15. Vasas V, Fernando C, Santos M, Kauffman S, Sathmáry E. Evolution
before genes. Biol Direct. 2012;7:1.

16. Mossel E, Steel M. Random biochemical networks: The probability of
self-sustaining autocatalysis. J Theor Biol. 2005;233(3):327–36.

17. Hordijk W, Hein J, Steel M. Autocatalytic sets and the origin of life.
Entropy. 2010;12(7):1733–42.

18. Hordijk W, Wills PR, Steel M. Autocatalytic sets and biological specificity.
Bull Math Biol. 2014;76(1):201–24.

19. Smith J, Steel M, Hordijk W. Autocatalytic sets in a partitioned
biochemical network. J Syst Chem. 2014;5:2.

20. Hordijk W, Hasenclever L, Gao J, Mincheva D, Hein J. An investigation
into irreducible autocatalytic sets and power law distributed catalysis.
Nat Comput. 2014;13(3):287–96.

21. Hordijk W, Steel M, Kauffman S. The structure of autocatalytic sets:
Evolvability, enablement, and emergence. Acta Biotheoretica. 2012;60(4):
379–92.

22. Sievers D, von Kiedrowski G. Self-replication of complementary
nucleotide-based oligomers. Nature. 1994;369:221–4.

23. Ashkenasy G, Jegasia R, Yadav M, Ghadiri MR. Design of a directed
molecular network. PNAS. 2004;101(30):10872–7.

24. Lincoln TA, Joyce GE. Self-sustained replication of an RNA enzyme.
Science. 2009;323:1229–32.

25. Vaidya N, Manapat ML, Chen IA, Xulvi-Brunet R, Hayden EJ, Lehman N.
Spontaneous network formation among cooperative RNA replicators.
Nature. 2012;491:72–7.

26. Hordijk W, Steel M. A formal model of autocatalytic sets emerging in an
RNA replicator system. J Syst Chem. 2013;4:3.

27. Sousa FL, Hordijk W, Steel M, Martin WF. Autocatalytic sets in the
metabolic network of E. coli. J Syst Chem. 2015;6:4.

28. Dittrich P, Speroni di Fenizio P. Chemical organisation theory. Bull Math
Biol. 2007;69:1199–231.

29. Steel M, Hordijk W, Smith J. Minimal autocatalytic networks. J Theor Biol.
2013;332:96–107.

30. Bloom D. A birthday problem. Am Math Monthly. 1973;80:1141–2.
31. Hordijk W, Steel M. Autocatalytic sets extended: Dynamics, inhibition,

and a generalization. J Syst Chem. 2012;3:5.
32. Dowling WF, Gallier JH. Linear-time algorithms for testing the satisfiability

of propositional Horn formulae. Logic Program. 1984;3:267–84.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	The basic RAF algorithm
	Outline

	Pseudo-RAFs and their use in a modified RAF algorithm
	Pseudo-RAFs
	A modified RAF algorithm
	Algorithm performance

	Sampling irreducible RAFs
	A probable lower bound on the number of irrRAFs
	The amount of overlap in irrRAF samples

	Systems that allow inhibition
	Application to the binary polymer model
	Inhibition within a generalized RAF framework

	Conclusions
	Appendix
	pRAFs and HORN-SAT
	Pseudo-code for the modified RAF algorithm

	Competing interests
	Authors' contributions
	Acknowledgments
	Author details
	References

