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Abstract

Background: The body-bar Pebble Game (PG) algorithm is commonly used to calculate network rigidity properties
in proteins and polymeric materials. To account for fluctuating interactions such as hydrogen bonds, an ensemble
of constraint topologies are sampled, and average network properties are obtained by averaging PG characterizations.
At a simpler level of sophistication, Maxwell constraint counting (MCC) provides a rigorous lower bound for the number
of internal degrees of freedom (DOF) within a body-bar network, and it is commonly employed to test if a molecular
structure is globally under-constrained or over-constrained. MCC is a mean field approximation (MFA) that ignores
spatial fluctuations of distance constraints by replacing the actual molecular structure by an effective medium that has
distance constraints globally distributed with perfect uniform density.

Results: The Virtual Pebble Game (VPG) algorithm is a MFA that retains spatial inhomogeneity in the density of
constraints on all length scales. Network fluctuations due to distance constraints that may be present or absent
based on binary random dynamic variables are suppressed by replacing all possible constraint topology realizations
with the probabilities that distance constraints are present. The VPG algorithm is isomorphic to the PG algorithm,
where integers for counting “pebbles” placed on vertices or edges in the PG map to real numbers representing the
probability to find a pebble. In the VPG, edges are assigned pebble capacities, and pebble movements become a
continuous flow of probability within the network. Comparisons between the VPG and average PG results over a test
set of proteins and disordered lattices demonstrate the VPG quantitatively estimates the ensemble average PG
results well.

Conclusions: The VPG performs about 20% faster than one PG, and it provides a pragmatic alternative to averaging
PG rigidity characteristics over an ensemble of constraint topologies. The utility of the VPG falls in between the most
accurate but slowest method of ensemble averaging over hundreds to thousands of independent PG runs, and the
fastest but least accurate MCC.

Keywords: Graph rigidity, Pebble game, Constraint topologies, Constraint counting, Mean field approximation,
Effective medium, Probability flow, Protein flexibility, Protein stability
Background
An important characteristic of molecular systems is the
number of internal degrees of freedom (DOF) governing
conformational variability. In particular, the mechanical
properties of a molecular structure depend on the de-
tailed set of interactions that form, which is controlled
by chemical composition and thermodynamic conditions
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[1,2]. To quantify flexibility within a molecular structure,
distance constraints between atoms have been used to
model covalent bonds and hydrogen bonds as well as
other noncovalent interactions [3,4]. As more interac-
tions form, additional distance constraints are added to
the network. As new distance constraints are placed in
flexible regions, the number of DOF decreases with a
corresponding reduction in accessible motion. A dis-
tance constraint that removes a DOF from the network
is said to be independent. On the other hand, if a new
distance constraint is placed in a rigid region, no change
in the number of DOF will result, and the distance con-
straint is said to be redundant. The major goal of rigidity
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analysis is to identify independent distance constraints.
Rigidity algorithms typically represent molecular struc-
ture as a graph where edges model distance constraints
and vertices model atoms or small molecular rigid
clusters.
In two dimensions, the first polynomial algorithm to

identify independent edges was proposed by Sugihara
[5]. Afterward, several other O(N2) algorithms were de-
veloped, such as by Imai [6] using a network flow ap-
proach, by Gabow and Westermann [7] using matroid
sums and by Hendrickson [8] using bipartite matching.
Jacobs and Hendrickson [9] improved the efficiency of
the bipartite matching algorithm in the context of a peb-
ble game (PG) where a graph is recursively built up one
edge at a time. In practice, the PG typically reduces
computational cost to O(N) whenever vertex connectiv-
ity is representative of molecules or polymeric materials.
This gain in efficiency occurs by immediately condens-
ing Laman subgraphs [10] as they are found. Since a
Laman subgraph is self-rigid, its connectivity is trans-
formed by triangularization so that any pair of vertices
can be reached by at most traversing two edges. In
pathological networks, such as the random bond net-
work [11], there are no redundant constraints until the
network all at once transitions from floppy to rigid.
The worst case performance of O(N2) operations oc-
curs in the PG on pathological networks because
Laman subgraphs are never detected. Finally, it is worth
mentioning that a new hierarchical decomposition
method to identify Laman subgraphs was recently de-
veloped by Bereg [12].
The PG was initially developed to calculate many

properties of graph rigidity for generic two-dimensional
networks [13]. Generic rigidity implies that knowing just
the constraint topology is sufficient to determine rigidity
properties, rather than the specific coordinates of atoms.
Rigidity properties include identifying: (1) a set of inde-
pendent distance constraints; (2) the rigid and flexible
regions within a network; and (3) over-constrained
regions that have more distance constraints than is
needed for the region to be rigid. Extensions to three-
dimensions using similar PG algorithms have been made
for a limited number of network types [3,14-16], and
further generalizations have been made to an entire class
of graph rigidity problems involving matroids [17,18].
The basic structure of the PG remains the same in
three dimensions when the body-bar model [19] is
used. The development of PG algorithms is moti-
vated by applications to polymeric materials and
polymers [1], and in particular to predict flexible and
rigid regions within proteins [2,3,20]. Motivation for
the virtual pebble game (VPG) described in this re-
port is to facilitate predicting thermodynamic stabil-
ity in proteins much more rapidly and with higher
precision than that can be achieved by ensemble
averaging results from the PG.
Thermodynamic properties of proteins and peptides

have been accurately predicted using a distance con-
straint model (DCM) that regards network rigidity as an
underlying mechanical interaction [21-23]. The DCM is
a complete equilibrium statistical mechanics model. As
such, thermal fluctuations of noncovalent interactions
are expressed through an ensemble of accessible con-
straint topologies, each with its own Boltzmann factor.
The free energy landscape is calculated for a protein
over a range of macrostates that are specified by the
average number of H-bonds and average number of
native-like torsion interactions that model good atomic
packing. Poor atomic packing is modeled by disordered
torsion interactions, which have properties that differ
from native-like torsions. Covalent bonding is modeled
as fixed distance constraints, while H-bonding and tor-
sion interactions are modeled as fluctuating distance
constraints. For each macrostate, the PG must be ap-
plied hundreds of times to ascertain a statistically mean-
ingful average probability for the fluctuating distance
constraints to be independent or redundant. The results
of the PG depend on the number, type and placement of
the distance constraints that are present. High and low
density of distance constraints appear within protein
structure when considering the folded and unfolded
states respectively. After the average number of DOF is
calculated for each macrostate, the free energy of a pro-
tein is subsequently expressed as a function of its global
flexibility [22,23].
In practice, the number of PG “plays” on distinct con-

straint topologies typically add up to a few million for a
protein having 150 to 200 residues. We therefore asked
if it would be possible to replace averaging over
hundreds of PGs per macrostate to obtain accurate in-
formation about which constraints are independent or
redundant using only one PG on a representative con-
straint topology. Barring specific details of the DCM that
can be found elsewhere [23], the idea is to replace hun-
dreds of PG “plays” for a given macrostate with a single
representative PG. In this case, the free energy calcula-
tions would be anywhere from 100 to 1000 times faster
depending on how much sampling error can be toler-
ated. With high throughput in silico protein design ap-
plications in mind, a few-hundred-fold speedup is
desirable. This begs the question about how much ac-
curacy must be sacrificed for such gain in speed? In pre-
vious works, the DCM was solved using Maxwell
constraint counting (MCC), which is viewed in today’s
language as a mean field approximation (MFA) that
ignores detailed information about constraint topology
except the average constraint density [24]. Surprisingly,
MCC was sufficient to accurately describe the salient
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thermodynamic properties of structural transitions for
the β-hairpin to coil transition [25], the α-helix to coil
transition [26] and protein folding [27].
The estimate for the number of DOF in a network

given by MCC [1,16,24] assumes that a network of N
atoms is globally flexible with all constraints independ-
ent whenever there are less than 3N – 6 constraints
present, otherwise the network is globally rigid. Surpris-
ingly, this crude estimate turns out to be markedly
accurate when distance constraints are uniformly distrib-
uted across an entire network. Of course, molecular sys-
tems of interest ubiquitously have fluctuations in local
constraint density. Although MCC provides only a mean
field estimate for the global response of a system, it does
yield a rigorous lower bound to the number of inde-
pendent DOF within a network. However, MCC enforces
a cooperative two state behavior where the native state
is globally rigid, and the unfolded state is globally flex-
ible. As such, two-state protein thermodynamics can be
captured because the constraint counting errors self-
average out in each state, while stark differences between
the folded and unfolded states are easy to characterize
within MCC.
Unfortunately, all local details regarding which regions

in a network are rigid or flexible are lost using MCC.
Therefore, a better MFA that counts DOF more accur-
ately in order to retain useful information about identify-
ing flexible and rigid regions provides the impetus for
the VPG. The VPG is based on a MFA that follows the
spirit of effective medium theory [28]. Specifically, an
effective constraint topology is created per macrostate to
represent a sub-ensemble of constraint topologies that
share specific characteristics of constraints. To calculate
the entire free energy landscape, tens of thousands of
VPG plays will still be needed in the DCM correspond-
ing to one VPG play per macrostate.
The VPG is designed to calculate ensemble average ri-

gidity properties using a single network by tracing prob-
abilities for pebble placement, rather than moving the
pebbles themselves. In this context, distance constraints
associated with fluctuating H-bonds are assigned a prob-
ability to appear in the network. Probabilities for an
interaction to appear are translated into pebble capaci-
ties assigned to edges within the graph. A greater pebble
capacity for a given type of interaction corresponds to a
greater average number of distance constraints. As a
consequence of this mapping, pebble rearrangements in
the VPG correspond to probability flowing through the
network. The key objectives of the VPG are to (1) more
accurately calculate the number of DOF in a network
compared to the lower bound estimate from MCC,
(2) retain network rigidity information similar to the sam-
pled average properties of the PG, and (3) make precise
predictions without sampling errors. Although the VPG
will cost approximately the same amount of computing
time as a single PG, its results are fully deterministic and
therefore void of statistical sampling errors. By design, the
first and third objectives are ensured by the VPG, where it
is as precise as machine precision allows. The usefulness of
such a VPG will then depend on how accurate it is com-
pared to the exact ensemble average PG results.
In a previous study [29] the rigid cluster decompos-

ition (RCD) from the VPG was compared to the
ensemble-averaged RCD of the PG. Considering a worst
case scenario where all H-bond probabilities were
treated with equal probability to maximize variance, it
was found that the VPG results for the RCD is a faithful
representation of the ensemble-average results of the
PG. Specifically, it was shown that the RCD results from
the VPG provide quantitative insight into protein flexi-
bility that is consistent within statistical error bars of the
PG sample averaged over 1000 distinct constraint top-
ologies. Furthermore, fluctuations in the average RCD
results were explored in a follow up study [30] by devis-
ing a hybrid model where the VPG and the PG were
blended together as a linear supposition with a weight
factor ranging from 0% to 100% VPG. Comparing speed/
accuracy tradeoff, it was determined that there is little to
no advantage to ensemble averaging using a PG if the
VPG is being used on proteins. In other words, the sys-
tematic error that the VPG produces is tolerable in many
cases where the size of the statistical error bars of the
ensemble averaged PG results is not tolerable.
In this report, all basic elements of the VPG algorithm

are described as an isomorphic mapping to a body-bar
PG to determine rigidity properties in proteins [15].
Performance and accuracy of the VPG is further charac-
terized by applying it to disordered lattices with a com-
parison to protein networks. VPG estimates for the
number of DOF are compared to the MCC estimates and
the ensemble averaged PG results. A heterogeneity index
is introduced to quantify local variations in constraint
density to investigate the impact on the VPG results
when there is greater or lesser degree of spatial variance
in the distribution of distance constraints within a net-
work. It is important to emphasize that all the test cases
considered in this work, and in previous works, do not
employ in anyway the DCM to calculate constraint prob-
abilities. Rather, distinct constraint topologies are gener-
ated using spatially invariant probabilities that maximize
local fluctuations to purposely consider worst case sce-
narios. Across a diverse set of test cases presented here,
the VPG meets our primary objective to achieve an excel-
lent balance between computational efficiency and accur-
acy in quantifying network rigidity. Consequently, we
expect the VPG will have widespread utility in robustly
and rapidly predicting average network rigidity properties
similar to its PG counterpart.
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Materials and methods
Test body-bar networks
A test set comprising of a large number of body-bar net-
works was created to characterize how accurate the VPG
can estimate the number of DOF, as well as the first and
second moments of rigid cluster size. These networks
vary from protein-like networks to topologies based on
disordered lattices that accentuate the role of fluctuating
edges. Particular emphasis is given to the results on dis-
ordered lattices to benchmark the performance of the
VPG under conditions that are far worse than those en-
countered in protein structure. This is because in pro-
teins there is a covalent bonded backbone chain that
supports crosslinking. The backbone chain is made up
of quenched distance constraints, meaning they do not
fluctuate. Crosslinking distance constraints come from
fluctuating H-bonds, and possibly quenched disulfide
bonds. Consequently, secondary and tertiary structure of
a protein dictates the nature of the network. In disor-
dered lattices, quenched covalent bonds and fluctuating
H-bonds are placed in the network at random, allowing
the ratio of number of H-bonds to number of covalent
bonds to be very different than that found in proteins.
The spatial distribution of covalent bonds and H-bonds
in disordered lattices is also much more heterogeneous
than that found in proteins. In particular, by selecting
conditions for disordered lattices that yield a high degree
of constraint density fluctuations (described below), the
MFA becomes most susceptible to error. As demon-
strated below, the VPG provides good estimates for key
rigidity properties even on networks that are intrinsically
much more heterogeneous than those found in protein
structure.
We consider square (d = 2) and cubic (d = 3) lattices

with L vertices in each dimension, yielding a total of
Ld =N vertices. Note that the two dimensional case
represents a sheet embedded in three dimensional
space, which need not be planar, but could ripple and
splay like beta sheets do in protein structure. In
addition, periodic boundary conditions are used in each
dimension for the disordered lattices so that all vertices
have 2d incident edges. It is important to note that the
regularity of the lattice whether in 2 or 3 dimensions is
applied to topology, but not to the geometry. Namely,
the lattices can be thought of as being distorted. In
other words, the atomic geometry of the networks in
this study is considered to be generic, and use of peri-
odic boundaries is for convenience, which follows the
same rationale given in previous work [13]. Protein
structure is modeled based on the coordinates of PDB
files, and the structure is assumed to be generic follow-
ing previous works [3,31].
For constraint networks considered here, each vertex

represents a rigid body with 6 DOF, and an edge
represents a number of generically placed distance con-
straints between two rigid bodies. As explained previ-
ously [14] the rigid body centered on an atom is a
consequence of local covalent bonding to neighboring
atoms. This atom to local rigid cluster mapping is based
on the molecular conjecture [19] that has recently been
proven rigorously [32]. Within this body-bar framework,
one of two types of edges can be placed between any
pair of vertices: quenched or fluctuating. Quenched
edges model covalent bonds and will have probability 1
to be present within the network. Fluctuating edges that
model H-bonds, for example, are present in the network
with probability, p. Assigning a probability to fluctuating
constraints reflects the continual process of intramo-
lecular interactions breaking and reforming within the
molecular structure, where the interaction is present p
fraction of the time. Note that for protein structure, the
probability for an H-bond to be or not to be present de-
pends on its local environment [23]. Nevertheless, we
purposely consider all fluctuating interactions to have
the same probability to be present because spatially in-
variant probabilities are convenient to characterize the
VPG across our test set of networks, and, more import-
antly, for a desired number of H-bonds in the network,
employing a uniform probability for all H-bonds corre-
sponds to maximizing constraint density fluctuations
across a network. In contrast, non-uniform probabilities
can create heterogeneity in the density of distance con-
straints, but local fluctuation in constraint density is
suppressed. Since we wish to benchmark the VPG under
worst case conditions, uniform probability is applied to
all fluctuating constraints.
In the disordered lattice networks each vertex has 2d

nearest neighbor vertices, and each of these pairs of ver-
tices may have an edge that is quenched or fluctuating,
or not present at all. An edge is quenched with probabil-
ity qfix or the edge is fluctuating with probability qfluct.
Neighboring vertices are disconnected with probability
(1 − qfix − qfluct). The process of creating a test body-bar
network is shown in Figure 1 for a simple case in two di-
mensions on a square lattice. Initially, we begin with a
set of unconnected vertices, each representing a rigid
body (Figure 1a). Next, quenched and fluctuating edges
are randomly placed between neighboring vertices in the
lattice based on probabilities qfix and qfluct respectively.
Specifically, a uniform random number (0 ≤ x ≤ 1) is
generated for each pair of neighboring vertices. When
x ≤ qfix a quenched edge is placed between the pair of ver-
tices; when qfix < x ≤ (qfix + qfluct) a fluctuating edge is
placed; otherwise no edge is placed.
The probability qfluct determines if an edge is going to

be part of the set of fluctuating edges (shown as dashed
lines in Figure 1b). Once an edge is known to be
fluctuating, another probability, p, determines if it is
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Figure 1 Creation of a disordered lattice in two dimensions. At the beginning of the process, (a) the network is a set of disconnected
vertices. Then (b), edges are placed between nearest neighboring vertices where some are quenched (solid lines) and others fluctuate between
being present or not (dashed lines). Missing edges are not shown. (c) When an edge is present, it represents 5 bars.
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present in the network. Over the entire network, the
probability, p, applies to each fluctuating edge. In the
limit that p→ 0 a fluctuating edge will always be
missing, and as p→ 1 a fluctuating edge will always be
present. The probability p controls the average amount
of cross-linking within the network, and at p ¼ 1

2 the
greatest fluctuations occur within an edge. The probabil-
ities {qfix, qfluct, p} dictate independent random events
that can occur for each edge. Subsequently, a Monte
Carlo process generates a sample of networks of specific
character. The pebble capacity of an edge is set equal to
the number of distance constraints that connect the inci-
dent vertices of the edge. Following earlier works that
model covalent bonds and H-bonds using 5 distance
constraints [3,15,16,31], we assign a pebble capacity of
5 to an edge that is present, 0 to an edge that is miss-
ing, and 5p to reflect an average pebble capacity for a
fluctuating H-bond.
One to one comparisons between the PG and VPG

are done on networks where the placement of quenched
and fluctuating edges are identical. For a network with
Nf fluctuating edges, an ensemble consisting of 2Nf dif-
ferent realizations must be generated to obtain an exact
average for any quantity of interest, such as the number
of independent constraints. In the example shown in
Figure 1b, the edges v1 − v2, v2 − v6, v6 − v7, v3 − v7 and
v3 − v4 are quenched describing covalent bonding, while
the edges v1 − v5, v2 − v3 and v7 − v8 describe fluctuating
H-bonds. Adjacent vertices not connected by an edge
represent “missing” interactions (e.g. v5 − v6). When an
edge is present, it represents 5 distance constraints
generically placed between two rigid-bodies that can
be bundled together as shown in Figure 1c. Here-
after, a distance constraint is referred to as a bar. It
is worth pointing out that the PG employs a multi-
graph because each bar is treated as an edge, and
multiple edges can join a pair of vertices to facilitate
exact integer counting. In contrast, integer counting
is irrelevant in the VPG because a constraint capacity is
assigned to each edge. For example, a capacity of 5
represents 5 bars bundled together. Hence, the VPG
is not a multigraph because a single edge represents
the average number of bars present via its pebble
capacity.
Once the number and placement of quenched and

fluctuating edges are specified, a few hundred samples is
usually sufficient to obtain PG averages with acceptable
statistical error bars. To be clear, note that for each sam-
ple an independent uniform random number (0 ≤ x ≤ 1)
is generated for each fluctuating edge. When x ≤ p,
the fluctuating edge is assigned 5 bars, otherwise no
bars are assigned. Within the VPG, fluctuating edges
are assigned a pebble capacity of 5p because on aver-
age five bars are present with probability p, and zero
bars are present with probability 1 − p. Thus, a fluc-
tuating edge in the VPG becomes a quenched edge
that removes 5p pebbles. An example of how an en-
semble of PG networks with two fluctuating edges
map to a representative network is shown in Figure 2.
In this case the ensemble of PG networks consist of
4 distinct constraint topologies.

Constraint counting on lattices
Within MCC, all distance constraints are assumed to be
independent within a flexible structure until a rigidity
transition takes place where the network becomes glo-
bally rigid. Formally, MCC is a MFA that neglects fluctu-
ations in the density of constraints throughout the
structure. For the body-bar disordered lattices consid-
ered here, Equation 1 is the MCC lower bound estimate
for the mean number of internal DOF over an ensemble
of networks having different placements of quenched
and fluctuating edges.

FMCC ¼ max 6Ld−5dLd qfix þ pqfluctð Þ−6 ; 0� � ð1Þ

Operationally Equation 1 subtracts from the maximum
number of DOF in the system (i.e. 6Ld) the average
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number of constraints and 6 trivial DOF related to
rigid body translations and rotations. Since we em-
ploy periodic boundary conditions, the number of
incident edges per vertex in a regular hyper-cubic
lattice is 2d. Note that because each edge connects
two vertices, dividing by 2 prevents double counting.
Hence, there are dLd maximum edges in the net-
work, and with 5 bars per edge the maximum num-
ber of distance constraints that can appear is 5dLd.
At the point of perfect balance (i.e. FMCC = 0) in the
number of DOF and constraints, a rigidity threshold
is defined where the character of the network transi-
tions from globally flexible with no local rigid parts
to globally rigid with no flexible parts as new con-
straints are added. Note that for heterogeneous rigid
and flexible regions to appear there must be con-
straint density fluctuations.
To check the limits of Equation 1, when there are

no distance constraints at all (i.e. qfix = qfluct = 0) the
total number of internal DOF is correctly calculated
to be 6(Ld − 1). As qfix or the product of probabilities,
pqfluct increases, more distance constraints are added
to the network, which leads to a decrease in internal
DOF. Here, we consider either a square lattice repre-
senting a sheet (d = 2) embedded in three-dimensional
space, or a cubic lattice (d = 3). Given that every edge
is tied to 5 bars, each vertex has a maximum of 20
and 30 incident bars for d = 2 and d = 3, respectively.
Since these full lattices possess a high density of
constraints at each vertex, many constraints will be
redundant long before MCC predicts the rigidity thresh-
old to take place corresponding to when FMCC→ 0+.
Note that without the max() function in Equation 1,
MCC gives a negative estimate for the number of internal
DOF, but this number reflects the number of redundant
constraints. An important characteristic of Equation 1 is
that the number of available DOF within the network is
an extensive quantity, being proportional to the number
of vertices within the network.

Description of the body-bar VPG algorithm
For generic body-bar networks, exact constraint count-
ing using an integer algorithm was previously imple-
mented as a pebble game (PG) [15], which serves here
as the starting point for the VPG. In the PG, each DOF
is represented by one pebble and each distance con-
straint is represented by one edge. Since multiple dis-
tance constraints can connect the same pair of rigid
bodies, the body-bar PG is based on a multigraph where
multiple edges can connect to a given pair of vertices.
Each vertex has 6 free pebbles to account for 3 transla-
tional and 3 rotational DOF. The PG builds up the net-
work from a set of isolated vertices by placing one edge
at a time in a recursive fashion. Operationally, pebbles
may be rearranged within the network to cover added
edges like explained for the 2D PG [9]. The body-bar PG
algorithm has been proved based on the matroidal prop-
erty of sparse graphs [17,18,32].
A redundant edge is identified when seven free pebbles

cannot be accumulated on its two incident vertices. To
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test if an edge connecting vertex va to vertex vb is inde-
pendent, 6 free pebbles are first collected on vertex va.
Note that six free pebbles can always be collected on
any vertex. The next step is to hold fix the 6 pebbles
to vertex va while attempting to collect a seventh free
pebble on vertex vb. If the seventh pebble is found, the
edge is independent and the seventh pebble is used to
cover the edge. As independent edges are covered, the
number of free pebbles on vertices decreases. If on the
other hand, a seventh pebble could not be found, the
edge is redundant and cannot be covered by a pebble.
While the order of edge placements affects which edge
is identified as redundant or independent, the total
number of independent constraints and DOF within
the network do not depend on this ordering. Further-
more, the rigid cluster decomposition is unique, and,
all rigid clusters comprise of contiguous sets of nearest
neighbor vertices.
The VPG inherits all key properties of the PG, where

operationally the VPG is isomorphic to the PG. The
main difference is that the number of pebbles that are
free on a vertex or that cover an edge is described by
a real number instead of an integer. As a consequence
of this distinction, the multigraph nature of the PG is
mapped onto a graph with only one edge between a
pair of vertices, but each edge is assigned a capacity.
Whereas in the PG n-distinct edges are needed to rep-
resent n bars, in the VPG, one edge is assigned a cap-
acity of n pebbles because the bars are bundled
together. For example, for 5 bars the edge has a cap-
acity of 5 as shown in Figure 1c. Before generalizing
to real numbers it is worth noting that assignment of
integer capacities to edges is a special case of the VPG
that results in a faster PG implementation than the
original multigraph PG implementation [15]. Consoli-
dation of information makes moving more than one
pebble at a time possible, which reduces the average
number of pebble searches and average pebble search
length. Roughly, the VPG runs about 20% faster than
the PG.
The main difference between the VPG and PG is con-

ceptual (not algorithmic) because the MFA suppresses
fluctuations in the number of bars that are present
within edges. The term “virtual” is used because pebbles
are no longer discrete entities, but rather represent an
average amount of pebbles that flow within an effective
constraint network where edge capacities rate limit the
flow of pebbles through an edge. Edge capacities will
generally be spatially inhomogeneous. In all other ways,
operations involving pebble rearrangements in the VPG
are identical to the PG. In particular, the directional na-
ture of pebbles covering edges in the VPG preserves the
critical bipartite matching aspect of the PG algorithm, so
that tracing through covered edges provides a viable
path from vertex va to vb only when the edge is covered
by pebbles from va to vb. A backflow from vertex vb to
vertex va is not guaranteed. The flow from vb to va re-
quires the edge to be covered by pebbles from vertex vb.
The forward flow rates and backflow rates depend on
the amount of pebbles that cover an edge from two dif-
ferent directions, and in general they are both present at
the same time, but not equal. Local correlations in peb-
ble flow paths in the VPG have the exact same restric-
tions as the PG.
In the VPG, the amount of pebbles that cover an edge

represent all possible PG runs simultaneously. Hence,
the pebble capacity of an edge in the VPG is set to the
average pebble capacity across the ensemble of all pos-
sible constraint networks. Because fluctuating edges are
tied to independent and identically distributed random
variables, this average is 5p. Employing the pebble re-
arrangement rules of the PG enforces local conservation
of pebble flow through edges and vertices. In particular,
the amount of pebbles covering an edge remains con-
stant as pebbles flow through the network. An important
point is that the bidirectional nature of the PG is pre-
served in the VPG. As such, the total number of pebbles
covering an edge consists of adding the amount of peb-
bles covering an edge from both directions. Hence, the
search for pebbles in this directed graph resembles a
network flow problem [33,34], where edge capacities
determine the maximal flow of pebbles through the
network.
To describe the VPG algorithm consider a network

consisting of vertices {vn}, n = 1, 2, … N, with a list of
edges {em}, m = 1, 2, … M. Let the capacity for the m-th
edge be denoted as cm. The VPG follows the following
procedures and operations:

1. Initialize the graph with a set of isolated vertices
{vn}, with six pebbes assigned to each vertex.

2. From the list of edges {em}, insert edge ek with
capacity ck into the graph. Let vi and vj be the two
incident vertices for edge ek.

3. Collect 6 pebbles for vertex vi by performing a
breadth first search.

4. Flag vertex vi as visited, and then attempt to collect
ck pebbles for vertex vj by performing a breadth first
search while holding the 6 free pebbles on vi in
place. If some, but not all ck pebbles are collected,
then continually try to collect more pebbles by
performing breadth first searches repetitively until
there are enough free pebbles on vj to cover edge ek.
On the other hand, upon the first time no free
pebbles can be collected on vertex vj indicates a
failed pebble search.

5. If ck or more pebbles are collected on vertex vj;
cover edge ek with ck pebbles, and declare this
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edge as independent. Otherwise, if less than ck
pebbles are collected on vertex vj; all the visited
vertices within the failed search are condensed
into a single vertex, which is assigned zero free
pebbles. Go to step 2 until all edges in the edge
list, {em}, has been placed.

6. End of VPG.

An example shown in Figure 3 illustrates VPG opera-
tions. The edge list used to construct the graph that in-
clude specifying the pebble capacity between pairs of
vertices, is given as v1 − 2.5 − v2, v2 − 5.0 − v3, v1 − 2.0 − v3,
v2 − 1.5 − v3. The operations that are both illustrated and
described in Figure 3 include: (1) pebble rearrangements
between vertex and edge (Figure 3a); (2) pebble backtrack-
ing (Figure 3c); and (3) condensation (Figure 3g). A collec-
tion of key VPG pseudo-codes is provided in the
Appendix. While different implementations are possible to
determine when two real numbers are equal on a digital
computer, usually two real numbers are considered equal if
they are within some tolerance. We break 1 pebble into 1
billion parts, and perform exact integer comparisons
among integer components. This approach yields a preci-
sion that is good to 1 part in 109, while maintaining exact
counting.
The essential step in the VPG is to collect ck pebbles

on vertex vj by employing a pebble search multiple
times. How the pebble search is implemented does not
matter provided it is exhaustive. When a failed search
occurs, all the vertices visited become part of a minim-
ally rigid object in the body-bar representation [15]. We
call these failed searches “Laman subgraphs” because of
the analogous correspondence with the original 2D peb-
ble game [9]. The vertices that comprise the Laman sub-
graph are subsequently condensed into a representative
vertex having 6 pebbles. The process used in the VPG is
identical to that used in the corresponding body-bar PG.
This condensation procedure dramatically reduces the
effective size of the network as Laman subgraphs are de-
tected, resulting in a typical performance from O(N2) to
O(N).

Results and discussion
It is convenient to divide the average number of internal
DOF (denoted by F) by the number of vertices in a net-
work to obtain an intensive quantity. The number of in-
ternal DOF per vertex as a function of the fluctuating
edge probability, p, is shown in Figure 4 at four exem-
plar values of qfix and qfluct. The examples shown are
representative difficult cases, as opposed to being trivi-
ally the same as qfix→ 1. For each of these cases the
results from MCC, VPG, and an ensemble-averaged
PG on two types of networks are compared. The first
type of network that was described above is cooperative
because either all or none of 5 bars are present within
fluctuating edges. A second type of network is consid-
ered where the 5 bars within a fluctuating edge are
non-cooperative by modeling each bar as an independent
and identically distributed random variable. We label
the ensemble-average PG results for the cooperative
networks PG, and bar-PG for the non-cooperative net-
works. Juxtaposition of the PG, bar-PG and VPG is
interesting because as a MFA the VPG cannot distinguish
between these two types of networks. The random charac-
ter of a non-cooperative network will be explained in
detail below.
The results for all four methods being compared in

Figure 4 are based on networks with 8000 vertices
(L = 20, d = 3) that share the exact same set of
quenched, fluctuating and missing edges. For the two
ensemble-based PG cases, averaging is performed over
100 randomly generated realizations for each value of p.
Like the original PG, the VPG results for the number of
internal DOF within a network are independent of the
order that edges are placed, which was extensively veri-
fied in this work. In particular, the VPG was run on the
same network tens of thousands of times, but with the
order of constraint placements randomly reshuffled each
time. Despite very different paths in building up the net-
work, identical results are always found. Moreover, an
edge with a certain capacity was divided into a large
number of parts in unequal portions, and these different
parts were placed in random order into the network.
Over tens of millions of checks on different ways to reach
the same final network, it is found that identical results
are obtained regardless of the path taken to build up the
network.
Interestingly, for PG it is possible to build a network

up in constraint density through a bootstrapping method
by first placing a certain number of constraints at ran-
dom, and then adding more constraints. For example, if
a disordered lattice has 10000 fluctuating edges, 10
edges can be placed in the network at random, to yield
p = 0.001 as the fraction of fluctuating edges present.
Then by adding 10 more random edges in succession, a
sweep from p = 0 to p = 1 is made where all p values are
calculated in increments of 0.001 where the next PG
starts from the previous network results. As such, the
PG does not restart from the no-constraint case each
time. While this procedure is useful for the PG, con-
straint placement correlations between different net-
works do appear. This same procedure can be applied to
the VPG, where it starts at p = 0, and then all fluctuating
edge capacities are incremented by Δp = 0.001 until p = 1
is reached. The total time of calculations for PG versus
VPG is comparable, since the VPG at the next increment
also starts from the previous case. However, in contrast
to PG, no induced correlations appear because each
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Figure 3 Illustration of how to play the VPG on a network with 3 vertices. A dashed line denotes the edge that is being added at the
current step, whose capacity is indicated in a dashed box. Appearing at the ends of an edge is the number of pebbles consumed from the
corresponding vertex used to cover the edge. The operations that rearrange pebbles are described as a sequence of labeled steps. Numbers
listed in dashed boxes refer to pebble capacities of an edge that is to be placed, but not yet placed in the network until the required number of
free pebbles can be collected. (a-b) Each vertex is initially assigned 6 pebbles, and an edge of capacity 2.5 is added to the graph. (c) Vertex v2
has 3.5 free pebbles and cannot fully cover the new edge between v2 and v3 (which requires 5 pebbles). A pebble search is carried out and 1.5
pebbles are backtracked through the edge between v1 and v2. (d-e) Vertex v1 has enough free pebbles to cover the newly added edge. (f) Adding
an additional edge between v2 and v3, the two edges (of capacity 5 and 1.5) combine, yielding a partially covered edge with capacity 6.5. Of course
physically, the greatest possible covering is 6. As such, only six pebbles can cover the edge. (g) Because the edge between v2 and v3 cannot be
fully covered, the attempted pebble search fails, which leads to the condensation of v2 and v3 into a single vertex denoted as v2. (h) Edges v1 − v2
and v1 − v3 in step (g) are combined into one edge v1 − v2.
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state is independent of the path taken to build up the
network.
As expected, MCC overestimates the minimum num-

ber of constraints needed for the network to become
rigid. When invoking MCC, the rigidity threshold is de-
fined as the lowest value of p for which FMCC = 0. When
FMCC > 0 the network is flexible, and when FMCC = 0
the network is rigid. In the PG, a network will gener-
ally have many localized rigid and flexible regions.
Spatial inhomogeneity of flexible and rigid regions is
caused by variations in distance constraint density
across the network. Due to a mixture of rigid and
flexible regions at the rigidity threshold, the true
number of internal DOF will not be zero at the ri-
gidity transition. It is also worth noting that the ri-
gidity threshold as determined by the PG is usually
below the MCC prediction, but this is not necessary
as demonstrated by many examples. The VPG results
are much closer to PG calculations than MCC, espe-
cially above the rigidity transition in the rigid phase.
Below the rigidity transition, the VPG estimate of F
is underestimated compared to the PG results across
intermediate values of p.
Relative to MCC, the improved accuracy of the VPG

occurs because it applies a MFA locally at the edge
level. The VPG averages the constraint density at the
edge level, and it does distinguish between quenched,
missing and fluctuating constraints. Keep in mind that
at the edge level the VPG replaces the random fluctu-
ations of bars with its average value without regard to
the underlying random process. For the test networks
described above, a fluctuating edge is associated with
either five or zero bars with probability, p or 1 − p re-
spectively. As such, quenched, fluctuating and missing
edges are assigned a pebble capacity of 5, 5p and 0
respectively.
It is interesting to note that due to the cooperative na-

ture of a fluctuating edge as having either all 5 bars or
no bars, fluctuations in the number of bars is maximal
in these networks. Because the VPG is a MFA, it is ex-
pected that the VPG results will be in better agreement
with ensemble averaged PG results if the constraint
density fluctuations at the edge level were less. Although
the nature of chemical bonding in molecular networks
imposes a high level of cooperativity, applications of the
VPG can extend beyond molecular networks. In the bar-
PG, the five bars within a fluctuating edge are placed in-
dependent of each other, each with probability p. Thus a
fluctuating edge is allowed to have {0, 1, 2, 3, 4, 5} bars,
where each bar has an independent probability of p to
be present and 1 − p to be absent. The average number
of bars that will be present within an edge is given as 5p.
Therefore, the two types of networks share the same
average property, but edge fluctuations are greatly re-
duced in the bar-PG relative to PG. The VPG is based
on the average pebble capacity of an edge, which is iden-
tical for the PG and bar-PG. Quite spectacularly, Figure 4
demonstrates that the VPG results are markedly close to
the bar-PG results simply by suppressing fluctuations
within edges, regardless of the large-scale heterogeneity
of where constraints are distributed.
It would be nice if the VPG could be used to provide a

lower bound estimate to the number of internal DOF to
the PG, but such a lower bound estimate is obviously
impossible. The VPG estimates average behavior of the
PG, and one can always find a realization that has all
fluctuating edges with all its bars present, and hence the
VPG would have a greater number of internal DOF
compared to that particular realization. However, it is
possible that the VPG provides a rigorous lower bound
estimate to the exact ensemble average number of in-
ternal DOF. We observe that the estimate for the aver-
age number of internal DOF from the VPG is always
lower than the sampled PG and sampled bar-PG aver-
ages, suggesting such a lower bound may exist. Attempt-
ing to prove this type of rigorous result on the VPG
opens up new research directions in the field of com-
binatorial optimization.
For a comprehensive comparison between the VPG

and PG results, contour plots given in Figure 5 show the
maximum error of the internal DOF per vertex, which is
given by



Figure 4 Comparisons for the average number of internal DOF per vertex. The average number of internal DOF per vertex within the
network for L = 20 are plotted as a function of fluctuating edge probability, p, based on Maxwell counting (red triangle), ensemble averaged PG
(green cross), VPG (blue circle), and ensemble averaged bar-PG (purple square). The straight line is the lower bound estimate given by MCC. The
VPG falls in between the PG and MCC results, which gives a much better approximation to the PG than MCC. The maximum error between the
PG and VPG occurs at values of p close to the Maxwell rigidity transition.
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ΔF
N

¼ max Fpg pð Þ−Fvpg pð Þ� �
N

ð2Þ

The maximum error in Equation 2 is determined by
scanning p in the range (0, 1). The value of p at which the
maximum occurs varies for different qfix and qfluct values.
The PG algorithm was run on 200 realizations for each set
of probabilities {qfix, qfluct, p}. As expected, the maximum
error occurs when qfluct = 1. The maximum error of ΔF/
N ≈ 0.6 is found in the worst case, corresponding to a 10%



(c) L = 20 (d) L = 40

(a) L = 5 (b) L = 10

Figure 5 Contour plots showing the maximum errors in the internal DOF per vertex across four different system sizes.
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relative error in the internal DOF count considering
there are 6 DOF per vertex. However, the maximum
error depends on the details of the network topology.
Based on the discussions above, MCC is more accur-
ate when the density of constraints in the network is
more uniform.
To better understand the computational accuracy of

the VPG in relation to the heterogeneous character
of the network topology, a quantitative measure, the
heterogeneity index, is introduced. We define the hetero-
geneity index, hI, as the standard deviation of the coord-
ination number (degree of a vertex) across all vertices
throughout a plucked network without any dangling
ends. The plucked network is obtained by the following
procedure. After a network is generated, any vertex with
degree one is deleted. That is, any vertex in the network
with a coordination number of one is a dangling end,
and it is plucked, which will change some degree 2 verti-
ces to degree 1 by creating new dangling ends. This
process is repeated until no more vertices have a degree
of one, and thus no more vertices can be removed
by plucking. After stripping off all dangling ends, the
remaining network directly supports percolation of ri-
gidity across the network. Plucked networks were used
previously to obtain universal behavior of rigidity lost in
protein unfolding as shown in [31]. Based on plucked
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networks, the formula for the heterogeneity index is
applied, given by

hI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N−1

XN
j¼1

dj−�d
� �2

vuut ð3Þ

where dj is the degree of vertex vj, and �d is the average
degree of vertices within the plucked network.
Simply put, the heterogeneity index is the standard devi-

ation in vertex connectivity in a plucked network. Initially
Equation 3 was applied to the original network containing
dangling ends. However, DOF from dangling ends are al-
ways counted in perfect agreement between the VPG and
average PG because dangling ends never create redundant
constraints. It is worth pointing out that the maximum
error is calculated to be the same on both the original and
plucked networks. However, plucked networks emphasize
constraint fluctuations responsible for errors caused by
the MFA. We calculated hI numerically for each randomly
generated network, meaning a fluctuating edge is present
or not based on a specific realization (sample).
The hypothesis that the VPG would increase in ac-

curacy as hI decreases proved wrong. Instead, Figure 6
reveals a complicated situation. Because stratifying
the data does not lead to any simplifications, the
plots in Figure 6 combine all data for various cases
of probabilities {qfix, qfluct, p}. A prevalent feature that
stands out is that the converse that a large hI implies
low accuracy is not true. This is because as p→ 1
the VPG results are essentially exact, yet hI can be
large because of the particular choice of qfix and
qfluct. Thus, a monotonic trend between hI and ac-
curacy of the VPG is not possible. Although errors in
the count of internal DOF between the PG and VPG
are typically smaller when hI is smaller, errors at
hI = 0 occur. Errors at hI = 0 were traced to situations
when both qfix and qfluct are small, and when p is
close to 1. In this case, it is rare to find rings in the
network, but small rings do appear. Deviations be-
tween VPG and PG occur in a normal way, yet hI = 0
because the plucking process eliminates everything in
the network except isolated rings, where all vertices
have a degree of connectivity of 2, and hence hI = 0.
Surprisingly, similar behavior is found in 2D and 3D
networks as shown in Figure 6a and b respectively. The ra-
tionale for constructing a network with 2D topology is be-
cause when applying MFA, fluctuations are generally less
important when nearest neighbor connectivity is greater.
Contrary to expectations, the VPG was slightly more ac-
curate for 2D networks. Thus, VPG accuracy holds up in
2D topologies markedly well. Interestingly, the largest er-
rors occur at a characteristic value of hI (≈0.83 for d = 3,
and ≈ 0.64 for d = 2), which demonstrates heterogeneity in
edge connectivity does influence the VPG, but in a much
less obvious way than that for MCC.
The above analysis reveals that VPG accuracy is

not simply related to local homogeneity. However, it
was shown above that VPG accuracy improves by
suppressing fluctuations in the number of bars using
bar-PG. To demonstrate this further, the maximum
error of internal DOF between VPG and bar-PG is
again plotted against the heterogeneity index for the
3D and 2D cases shown in Figure 6c and d. Similar
qualitative dependence of maximum error on hI is
found compared to the maximum error between
VPG and PG. Most significantly, the scale of the er-
rors is decreased by almost an order of magnitude.
Also significant is that many of the errors for large
values of hI for the bar-PG is about the same as for
PG. It also appears that for some small values of hI
the error in the bar-PG are higher. However, this is
because the data cannot be mapped one to one, and
the hI values for non-cooperative fluctuations shift to
lower values, since the all or no bars in a fluctuating
edge increases the heterogeneity index.
In most regimes of the parameter space {qfix, qfluct, p}

for disordered lattices, the VPG provides markedly
accurate estimates for the number of internal DOF.
Moreover, maximum errors shown in Figure 6 always
result in a relative error of less than 10%, which is
sufficiently accurate for a broad range of applications.
The disordered lattices were analyzed specifically be-
cause they exacerbate spatial fluctuations, which tend
to undermine the MFA. Importantly, the character of
protein structure suppresses fluctuations. To high-
light this point, the maximum error between VPG
and PG versus hI is plotted in Figure 6a over a data-
set of four proteins that are non-redundant at the
SCOP [35] family level. We selected a scorpion toxin
(pdbid = 1AHO) [36], the biomedical relevant onco-
gene MTCP-1 (pdbid = 1A1X) [37], the FLAP endo-
nuclease from M. jannashii (pdbid =1A76) [38] and
a DNA transcription regulator (pdbid = 3COQ) [39].
In proteins, covalent bonds are represented by quenched
edges, and H-bonds are represented by fluctuating edges.
Following previous work [29], the probability, p, for
a H-bond to be present is the same for all H-bonds.
It is clear from Figure 6a that protein networks exhibit

a more uniform coordination number than disordered
lattices. More important, the maximum errors in esti-
mating the number of internal DOF drop by more
than an order of magnitude compared to disordered
lattices. As such, the VPG is an excellent approxima-
tion to the PG in applications to proteins, as demon-
strated in Figure 7 for the four representative proteins
showing ΔF/N as a function of the fluctuating edge
probability, p. In proteins, we also average over 100



(c) 3D Networks, VPG and bar-PG (d) 2D Networks, VPG and bar-PG

(a) 3D Networks, VPG and PG (b) 2D Networks, VPG and PG

Figure 6 Maximum difference of internal DOF per vertex between ensemble averaged PG and VPG versus heterogeneity index. The
data is collected for different combinations of qfix and qfluct. Panels (a) and (b) correspond, respectively, to 3D and 2D lattices with L = 20. Panels
(c) and (d) show errors that are much smaller between the VPG and the bar-PG. In addition, in panel (a) shows in green symbols the results
obtained for 4 different proteins as explained in the text.
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PG samples to get ensemble averages. Notice that the
VPG has infinite precision (zero error bars) compared
to the sampling error bars seen in Figure 7. While the
VPG produces systematic error in the number of in-
ternal DOF that underestimates the exact results, it
having infinite precision can be more important for
applications involving comparative analysis where rela-
tive error can cancel out.
We extend the algorithm comparison to the identifica-
tion of rigid clusters. After all distance constraints are
placed within the network, both the PG and VPG deter-
mine the number of DOF that are represented as free
pebbles on vertices throughout the graph. Regions with
an excess number of pebbles are flexible in contrast to a
set of vertices that cannot share more than 6 pebbles,
and hence form a rigid cluster. More specifically, for two



Figure 7 Comparing the ensemble averaged PG to the VPG in proteins. The average number of internal DOF per vertex for four proteins is
plotted as a function of fluctuating edge probability, p, based on ensemble averaged PG and VPG. The standard deviation for PG is shown for
comparison. The VPG provides a good approximation for the PG results.
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vertices to belong to the same rigid cluster, there must
be a maximum of six DOF between them. In order to
identify rigid clusters, the counting of pebbles is carried
out between pairs of vertices. The method to identify all
rigid clusters for the VPG is exactly the same as that of
the PG [15]. In O(N) operations on a graph with N verti-
ces, each vertex is assigned to a unique rigid cluster.
When all the vertices are assigned to a rigid cluster it is
possible to calculate the average number of vertices per
cluster, this quantity called average cluster size (ACS)
[29] is calculated by

ACS ¼ 1
Nc

XNc

c¼1

NV cð Þ ð4Þ

where Nc is the number of rigid clusters in the network,
and NV(c) is the number of vertices belonging to the
c-th rigid cluster. The VPG is compared to the PG
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with respect to the ACS across the fluctuating edge
probability, p, for four exemplar disordered-lattices
shown in Figure 8, and for the four proteins shown
in Figure 9. When p is small, most of the fluctuating
edges are missing, and most of the rigid clusters con-
sist of very few vertices. When p increases, the sizes of the
rigid clusters increase since more of the fluctuating edges
will be present, and then crosslinking will merge rigid
Figure 8 Average cluster size (ACS) for four exemplar lattice cases as
ensemble averaged PG and VPG.
clusters into larger rigid clusters. This increase in average
cluster size will reach a maximal point when all the fluctu-
ating edges are present in the network as p→ 1. Clearly,
the VPG provides ACS estimates that are in very good
agreement with the PG results.
The rigid cluster susceptibility (RCS) is compared

between the VPG and PG algorithms. The RCS is de-
fined as:
a function of the fluctuating edge probability, p, based on



Figure 9 Average cluster size (ACS) for four protein networks as a function of the fluctuating edge probability, p, based on ensemble
averaged PG and VPG.
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RCS ¼ 1
Nc−1

XNc−1

c¼1

NV cð Þ−ACSreducedð Þ2 ð5Þ

where the sum in Equation 5 does not include the
largest rigid cluster in the network, and the reduced
ACS is the average cluster size without counting the
largest rigid cluster in the network. The RCS is
called the reduced second moment in rigid cluster
size in percolation theory, and it is employed to
identify the percolation threshold [40]. With this def-
inition, the peak in the RCS as a function of p corre-
sponds to a critical value where the rigid cluster size
exhibits maximum fluctuations. Typically this point
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indicates a transition from a globally flexible to a globally
rigid network, which is referred to as a rigidity transition
[13]. The RCS curves for the exemplar disordered-lattices
and four proteins are shown in Figure 10 and Figure 11,
respectively. In general the nature of the rigidity transition
for these networks is captured well by the VPG, albeit the
location of where the transition takes place is inaccurate
due to the mean-field nature of the calculation. In all the
Figure 10 Rigid cluster susceptibility (RCS) curve for four exemplar la
based on ensemble averaged PG and VPG.
metrics considered here, the VPG better represents the
ensemble-average properties of the PG in proteins com-
pared to the disordered lattices.
We have in prior work compared the detailed rigid

cluster decompositions between the VPG and PG to a
large dataset of 273 proteins [29]. We found that the
correspondence between the average rigid cluster de-
composition of the PG to that predicted by the VPG
ttice cases as a function of the fluctuating edge probability, p,



Figure 11 Rigid cluster susceptibility (RCS) curve for four protein networks as a function of the fluctuating edge probability, p, based
on ensemble averaged PG and VPG. The maximum peak represents the point where the protein transitions from being globally flexible to
globally rigid.
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is in markedly good agreement when using a uniform
probability, p, for H-bonds to be present in the pro-
tein. To test this correspondence further, we also de-
veloped a hybrid model that bridges the averaging
technique of PG with the VPG in a linear weighted
fashion so a gradual transition from one model to
the other can be analyzed [30]. The hybrid model
was able to determine that the VPG provides a very
good tradeoff between simplicity, speed, and accuracy
that is useful for pragmatic applications. In other
work to be published elsewhere, the VPG is applied
to proteins when non-uniform probability is used for
fluctuating H-bonds given by a Fermi-Dirac probabil-
ity distribution function [23] where most H-bonds
(>80%) have a probability to be formed that is close
to either 0 or 1. As such, the distinction between the
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VPG and the ensemble PG significantly reduces com-
pared to using a constant p for all H-bonds as done
here. While our other (unpublished) results extend
the work presented here in a specialized application,
verifying the validity of the VPG through extensive
testing demonstrates that VPG is an excellent MFA
under conditions that are far worse than what will
be encountered in applications to proteins and other
biopolymers.
The last aspect of the VPG to characterize is the

execution time compared to a single PG. As demon-
strated in Figure 12, the execution time of the VPG
scales approximately linearly with the number of
vertices in the network. Typically, one run of the
VPG is about 20% faster than a single PG. The ac-
curacy of the VPG algorithm is comparable to the
ensemble average over hundreds of PG network real-
izations in proteins. Thus, the VPG will provide a
tremendous increase in computational speed of rigid-
ity analyses in applications involving protein flexibil-
ity and stability.
The benchmarking of linear computational com-

plexity holds up for all regions of parameter space
{qfix, qfluct, p}, except exceedingly close to the rigidity
transition when qfix→ 0 and qfluct→ 1, where the
VPG scales as O(N2) to identify all constraints as in-
dependent or redundant. It is generally found from
simulation on networks that model molecular struc-
ture that condensation of Laman subgraphs improves
the scaling of the VPG from O(N2) to almost always
Figure 12 VPG execution times are plotted versus the number of ver
for qfix = 0 and qfluct = 1. In all cases, the execution time is essentially linea
O(N) above the rigidity transition. This dramatic im-
provement in performance follows the same response
as that found in the 2D and 3D PG’s. Here, “almost
always” means that as long as the network is not
very near the rigidity transition, we empirically find a
linear dependence on run time to the number of ver-
tices in the network. Interestingly, for the case of a
complete lattice with all fluctuating edges (qfix = 0,
qfluct = 1, 0 ≤ p ≤ 1) the prediction of the rigidity
threshold is in perfect agreement with the MCC pre-
diction where the critical transition probability is
given by the value of p in Equation 1 when one sets
FMCC = 0. Although VPG recovers MCC when no
constraint density fluctuations are present, in this
atypical case VPG is found to perform as O(N2) very
near the rigidity transition, where p must be well
within a 1% deviation from the threshold probability.
However, this worse case situation will never happen
in practice when studying molecular systems of any
type.
Conclusions
The algorithm of the VPG has been defined, and
the accuracy and performance of a VPG implemen-
tation has been benchmarked on a diverse set of
networks comprising random disordered lattice net-
works and four representative proteins. To quantify
accuracy, the VPG algorithm is compared to ensem-
ble average properties of the PG algorithm for the
tices N within the network, for 21 uniformly spaced values of p
r with respect to N.
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number of internal degrees of freedom, average cluster
size, and rigid cluster susceptibility. Its accuracy for
counting the number of DOF is significantly im-
proved over MCC. The computational cost for the
VPG in practice is anywhere between 100 to 1000
times faster than PG ensemble averaging, and no
statistical error bars are incurred because the need
for sampling over different constraint topologies has
been completely eliminated. Moreover, the average
Rigid Cluster Size and Rigid Cluster Susceptibility
(RCS) compare well between the PG and VPG ap-
proaches, whereas the commonly invoked MCC cannot
provide this information.
Unlike MCC that averages globally across a net-

work, the VPG is a MFA to the PG algorithm at the
level of individual edges. Because of its mean-field
nature, the VPG deviates further from the ensemble
averaged PG results when distance constraint fluctua-
tions are large and cooperative, and while not neces-
sary, errors are often further exacerbated with increased
heterogeneous constraint density fluctuations. Disor-
dered lattices with 3D and 2D topologies provide a
convenient way to probe extreme bad cases where
the VPG has maximum errors. It is found that the
maximum error cases that disordered lattices present
are more than an order of magnitude higher than
the maximum errors encounter in proteins. Even in
the worst case situations found for disordered lat-
tices, the VPG provides a faithful qualitative repre-
sentation of the exact ensemble averaged PG results
that provides far more information than the com-
monly employed MCC.
In proteins the VPG provides a quantitatively ac-

curate estimate of the average mechanical properties
of the PG results over an ensemble of hundreds of
samples. Because the VPG performs about 20% faster
than one PG run, it provides a pragmatic alternative
to averaging PG rigidity characteristics over an en-
semble of constraint topologies. It is clear that the
utility of the VPG falls in between the most accurate
but slowest method of ensemble averaging over hun-
dreds to thousands of independent PG runs, and the
fastest but least accurate MCC. The VPG promises
to offer the computational biology community a
powerful tool for the mechanical analysis of protein
networks suitable for high-throughput applications in
structural bioinformatics.
Appendix
In this appendix, descriptions and pseudocodes are pro-
vided for key components to the VPG. The pseudocodes
are written without reference to data structure details
that represent the network.
Description of the key VPG algorithms
virtural_pebble game(edge_list, N) considers a list of
edges to be place among N vertices, and tries to cover
each edge with as many pebbles as its capacity one at a
time. To cover an edge, first pull back 6 pebbles associ-
ated with one of the incident vertices of the edge. Rigid-
ity theory guarantees that 6 pebbles can be pulled back
for any vertex. Then a second pebble search is carried
out for the second incident vertex, while blocking access
to the first vertex. If enough pebbles can be found to
cover the edge, the search is successful; otherwise the
search fails and all the vertices that are visited during
the search condensate to one representative vertex. The
same procedure is repeated for all the edges.
get_pebbles(u, pebbles_required, block_vertex) attempts

to retrieve the required number of free pebbles on ver-
tex u, and it returns the number of free pebbles on
vertex u after the attempt is made. Two possible out-
comes are possible: Case 1: The number of free peb-
bles residing on vertex u is greater than or equal to
the required number of pebbles. Case 2: The max-
imum number of pebbles is on vertex u, but it is less
than the required number. The visited vertices are also
given as output, but in case 2, no other vertex can be
reached by a pebble search, meaning this list of vertices
define a Laman subgraph.
collect_pebbles(v, visited_vertices, pebbles_required) per-

forms multiple breadth first searches to find free pebbles
and pulls them onto the root vertex v of the search tree
by reversing the search route that leads from vertex v
to the free pebbles. Pebble searching continues until ei-
ther the required pebbles are collected on vertex v, or
the required number of pebbles is more than can be
collected.
back_track(v, vertex_front, route) follows in reverse the

route previously taken that found free pebbles at the last
vertex_front and it pulls free pebbles through a non-
bifurcating chain of vertices back to vertex v while cov-
ering the edges as a new directed path. A multiple set of
created directed paths start from on the vertex_front
and traverse to the root vertex, v. The number of peb-
bles that can be pulled back is limited to the sum over
minimum edge capacities encountered along each back-
ward track.
collapse_vertices(visited_vertices) is used following a

failed pebble search. This algorithm chooses the vertex
with lowest index as root, and all vertices in the visited
vertices are assigned the same index as the root index.
Hence all the vertices in the visited_vertices list are
grouped together and collapsed onto one representative
vertex – the root. Any edges that are remaining to be
placed in the network, but have both of its incident ver-
tices belonging to this collapsed set of vertices are re-
moved from the edge_list.
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VPG pseudocodes
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Remark: With straightforward data structures the pre-
sented algorithms perform as O(N2). Our implemented
data structure employs a recursive mapping functionality
such that when a vertex is needed, a dynamic linked list
(DLL) interface is always called to return the lowest ver-
tex label. The DLL is updated (shrinks) among active
vertices upon its use, but most vertices are not active
and not updated. The DLL interface is not shown be-
cause it obfuscates the procedural steps in the above five
algorithms, but it improves typical performance to O(N)
as explained in the text.
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