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Abstract

Background: Biclustering, the discovery of sets of objects with a coherent pattern across a subset of conditions, is a
critical task to study a wide-set of biomedical problems, where molecular units or patients are meaningfully related
with a set of properties. The challenging combinatorial nature of this task led to the development of approaches with
restrictions on the allowed type, number and quality of biclusters. Contrasting, recent biclustering approaches relying
on pattern mining methods can exhaustively discover flexible structures of robust biclusters. However, these
approaches are only prepared to discover constant biclusters and their underlying contributions remain dispersed.

Methods: The proposed BicPAM biclustering approach integrates existing principles made available by
state-of-the-art pattern-based approaches with two new contributions. First, BicPAM is the first efficient attempt to
exhaustively mine non-constant types of biclusters, including additive and multiplicative coherencies in the presence
or absence of symmetries. Second, BicPAM provides strategies to effectively compose different biclustering structures
and to handle arbitrary levels of noise inherent to data and with discretization procedures.

Results: Results show BicPAM’s superiority against its peers and its ability to retrieve unique types of biclusters of
interest, to efficiently deliver exhaustive solutions and to successfully recover planted biclusters in datasets with
varying levels of missing values and noise. Its application over gene expression data leads to unique solutions with
heightened biological relevance.

Conclusions: BicPAM approaches integrate existing disperse efforts towards pattern-based biclustering and
provides the first critical strategies to efficiently discover exhaustive solutions of biclusters with shifting, scaling and
symmetric assumptions with varying quality and underlying structures. Additionally, BicPAM dynamically adapts its
behavior to mine data with different levels of missing values and noise.
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Introduction
Biclustering, a local approach for clustering, seeks to find
sub-matrices (biclusters), subsets of rows with a highly
correlated expression pattern across a subset of columns.
Biclustering has been extensively applied in gene expres-
sion data analysis [1], since small groups of genes can
participate in multiple cellular processes or pathways of
interest that may be only active in a subset of the condi-
tions under analysis. Biclustering has been also applied to
group mutations and copy number variations [2], to ana-
lyze biological networks [3], and to study translational [4],
chemical [5] or nutritional data [6].
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Biclustering involves hard combinatorial optimization.
In particular, its complexity increases when rows and
columns are allowed to participate in more than one
bicluster (non-exclusive structure) and in no bicluster
at all (non-exhaustive structure). Hence most existing
algorithms are either based on greedy or stochastic
approaches [1,2,7,8], potentially producing sub-optimal
solutions, or on finding a constrained number, structure
or type of biclusters [1,2,9].
The state-of-the-art attempts to tackle biclustering

using pattern mining techniques allow for exhaustive
and flexible searches and show solid levels of efficiency
[10,11]. The fact that pattern mining research is driven by
scalability requirements [12], opens a critical direction to
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perform biclustering. Interestingly, the existing pattern-
based approaches for biclustering – such as BiModule
[13], DeBi [10], RAP [14] and GenMiner [15] – pro-
vide complementary principles of interest for this field.
However, these principles are not yet integrated. Addi-
tionally, existing approaches only discover biclusters with
constant profiles [10,13,14], and are not able to han-
dle missing values or medium to high levels of noise.
This work aims to target these limitations by propos-
ing a pattern-based biclustering approach, BicPAM, that
is able to combine existing potentialities from state-of-
the-art pattern-based approaches with two critical novel
contributions:

– flexible exhaustive solutions: arbitrary number of
(potentially overlapping) biclusters with additive,
multiplicative and symmetric assumptions using
multiple ranges of values;

– biclustering behavior dynamically adapted to deal
with varying levels of noise and missing values.

To our knowledge, this is the first biclustering approach
that is able to support and combine each of these two
contributions. The importance of these contributions is
shown experimentally over synthetic and biological data.
Additionally, experimental results on both synthetic and
real datasets demonstrate the efficiency and effectiveness
of the pattern-based biclustering algorithms proposed in
BicPAM.
The paper is organized as follows. Background covers

essential concepts from biclustering and pattern mining,
and surveys the contributions from existing pattern-based
biclustering approaches. BicPAM: pattern-based biclus-
tering describes the proposed algorithms. In Results, we
assess BicPAM’s performance on synthetic and real data.
Finally, the contributions and implications of this work are
synthesized.

Background
This section introduces fundamental concepts of biclus-
tering and pattern mining, and surveys the related work
on pattern-based biclustering.

Definition 1. Given a matrix, A = (X,Y ), with a set of
rows X = {x1, .., xn}, columns Y = {y1, .., ym}, and elements
aij ∈ R relating row i and column j:

– A bicluster B = (I, J) is a r × s submatrix of A, where
I = (i1, .., ir) ⊂ X is a subset of rows and
J = ( j1, .., js) ⊂ Y is a subset of columns;

– The biclustering task is to identify a set of biclusters
B = {B1, ..,Bp} such that each bicluster Bk = (Ik , Jk)
satisfies specific criteria of homogeneity, where
Ik ⊂ X, Jk ⊂ Y , and k ∈ N.

Approaches to solve the biclustering task either explic-
itly or implicitly rely on a merit function to define the
homogeneity criteria. An illustrative function is the vari-
ance of bicluster’s values. Merit functions either guarantee
intra-bicluster homogeneity, the overall homogeneity of
the output set of biclusters (inter-bicluster homogeneity),
or both. When combined within specific search proce-
dures, merit functions are to define the type, quality and
structure of biclustering solutions [1].
Merit functions can be defined to locally maximize

greedy iterative searches [7,8,16-19], to combine row- and
column-based clusters [20-22], to exploit matrices recur-
sively [23], and to stochastically model the target solution
[6,24]. In exhaustive searches, which commonly rely on
constrained formulations, merit functions are the heuris-
tics that guide the space exploration [9,25].
Figure 1 presents different types and structures of

biclusters. Biclusters can follow constant or more flex-
ible models, with coherency on rows or columns [1].
Biclusters under an additive-multiplicative model, also
referred as shifting-scaling biclusters, can be discovered
using merit functions based on δ-offsets of noise [17,25],
on vector-angle cosines [21], or on generative models
of linear dependencies [2]. Biclusters with symmetries
can be discovered by differential biclustering methods
[9,26] and by few others [14]. Additionally, plaid [6] and
order-preserving [19] types of biclusters have also been
tackled [27,28]. Multiple biclustering structures have been
proposed [1], with some approaches constraining them
to exhaustive, exclusive, non-overlapping structures, and
others allowing more flexible structures with arbitrarily
positioned overlapping biclusters [7].

Pattern mining
Patterns are itemsets, rules or substructures that appear in
a dataset with frequency no less than a specified threshold.
Finding patterns is critical to derive relations from data.

Definition 2. Let L be a finite set of items, and P be an
itemset P ⊆ L. A transaction t is a pair (tid,P)with id ∈ N.
An itemset database D over L is a finite set of transactions
{t1, .., tn}.

Definition 3. A transaction (tid,P) contains P′, denoted
P′ ⊆ (tid,P), if P′ ⊆ P. The coverage �P of an itemset P is
the set of all transactions in D in which the itemset P occurs:
�P = {t ∈ D | P ⊆ t}. The support of an itemset P in D,
denoted supP, can either be absolute, being its coverage size
|�P|, or a relative threshold given by |�P|/|D|.

Definition 4. Given an itemset database D and a min-
imum support threshold θ , the frequent itemset mining
(FIM) problem consists of computing the set {P | P ⊆
L, supP ≥ θ}.
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Figure 1 Illustrative bicluster types and biclustering structures.

A frequent itemset is an itemset with supP ≥ θ . An
accepted pattern is a frequent itemset that satisfies any
other placed constraints over D.
To illustrate these concepts, consider the following

itemset database, Dex = {(t1,{B,E,G}), (t2, {A,B,C,E,H,J}),
(t3,{A,B,D,H,J}), (t4,{D,H,J}), (t5,{A,H,J}), (t6,{A,G})}. We
have |L| = |{A, .., J}| = 10,�{B,J} = {t2, t3} and sup{B,J} =
|{t2, t3}|/6 = 0.(3). For θ = 4, FIM tasks returns
{{A}, {H}, {J}, {H , J}}.
Since FIM proposal [29], multiple extensions have been

proposed, ranging from scalable data mining method-
ologies to multiple condensed and approximated pattern
representations.

Definition 5. Given an itemset matrix, a support
threshold θ , and the coverage function � : 2L → 2D that
maps an itemset P to its set of supporting transactions:

– A frequent itemset P is an itemset that satisfies
|�(P)| ≥ θ ;

– A closed frequent itemset is a frequent itemset with
no superset with same support

(∀P′⊃P|P′| < |P|);
– A maximal frequent itemset is a frequent itemset with

all supersents being infrequent, ∀P′⊃P|�(P′)| < θ .

A frequent itemset is maximal if all its super-
sets are infrequent, while it is closed if it is not a
subset of an itemset with the same support. Con-
sidering the previously introduced itemset database
Dex, a given threshold θ = 3 and |P| ≥ 2,
there is one maximal frequent itemset ({A,H , J}) and
there are two closed frequent itemsets ({A,H , J} and
{H , J}).

Definition 6. Consider two itemsets P ∈ 2L and P′ ∈
2L, where P′ ⊆ P, and a predicateM.M is monotonic when
M(P) ⇒ M(P′) andM is anti-monotonic when¬M(P′) ⇒
¬M(P).

These properties are the basis of FIM, either for candi-
date generation or pattern growthmethods, with horizon-
tal or vertical data formats.

Pattern-based biclustering
The homogeneity criteria (Definition 1) in pattern-based
approaches for biclustering is obtained through sup-
port and confidence-correlation metrics. Pattern-based
approaches allow for an efficient and exhaustive space
search that produces an arbitrary high number of biclus-
ters within a flexible structure.

Definition 7. Given amatrix A and aminimum support
threshold θ , a set of biclusters ∪kBk, where Bk = (Ik , Jk),
can be derived from the set of frequent itemsets ∪kPk by
either mapping (Ik , Jk) = (�Pk ,Pk) to compose biclusters
with coherency on rows, or by mapping (Ik , Jk) = (Pk ,�Pk )
to compose biclusters with coherency on columns.

A pattern-based approach to biclustering relies on an
itemization step, where the original matrix is transformed
into an itemset database, followed by the application of
FIM methods under a low support threshold. For real-
value matrices, normalization and discretization proce-
dures are applied. Then, the discrete value of each cell
is concatenated with the respective column index. Each
transaction of the target itemset database corresponds to
a row with these new values. FIM is applied over the
database to mine frequent patterns, which are then used
to derive biclusters with constant values on rows. Con-
stant values on columns can be mined using the transpose
matrix. To find a more constrained type of biclusters, such
as constant values overall, each item needs to be mined
separately. Figure 2 illustrates how to deliver such types of
biclusters using frequent patterns.
Although the state-of-the-art pattern-based biclustering

methods follow this general behavior, they have vary-
ing structural specificities that affect both the efficiency



Henriques and Madeira Algorithms for Molecular Biology  (2014) 9:27 Page 4 of 30

Figure 2 Discovering biclusters with a constant assumption across rows (a), columns (b) and overall elements (c) using frequent itemset
mining. Column identifiers (y1, y2, y3) are combined with the observed values {0,1,2,3}, and FIM applied under a parameterizable support threshold
(θ = 2 ∧ |P| ≥ 2). Constant values on columns can be mined using the transpose matrix. To find biclusters with constant values overall, each item
needs to be separately mined.

and the quality of the output. Two classes of PM-based
biclustering approaches can be considered: approaches
that directly apply pattern miners over discrete matrices,
and approaches that target numeric matrices by customiz-
ing the support metric. To our knowledge, BiModule [13],
DeBi [10], Bellay’s et al. [30] and GenMiner [15] are the
state-of-the-art methods for this first class of PM-based
biclustering. BiModule [11,13] allows for a parameter-
ized multi-value itemization of the input matrix to dis-
cover constant biclusters derived from (closed) frequent
patterns using the LCM miner [31]. DeBi [10] derives
biclusters from (maximal) frequent patterns mined over
binarized matrices using the MAFIA miner [32], and
places key post-processing principles to adjust biclusters
in order to guarantee their statistical significance. Bellay’s
et al. [30] use the Apriori miner with additional princi-
ples to evaluate the functional coherency of the discov-
ered biclusters against the background noise. GenMiner
[15] includes external knowledge within the input matrix
to derive biclusters from association rules that relate
annotations (external grouping of rows or columns) with
computed clusters of rows and columns from (closed)
frequent patterns using CLOSE [33]. Although other
biclustering approaches seize contributions from these

previous works [34,35], we do not refer to them as PM-
based appproaches if the core mining task does not rely
on FIM.
The itemization step is optional for the second class

of methods [36]. To our knowledge, RAP [14], RCB dis-
covery [36] and ET-bicluster [37] are the state-of-the-art
methods in this context. RAP [14] plugs an adapted range-
based metric to mine constant biclusters on rows (or
columns), while RCB discovery targets biclusters with
constant values overall [36]. ET-bicluster extends the pre-
vious approaches to discover noisy biclusters, although
an exhaustive enumeration of biclusters is not guaran-
teed [37]. Alternative support metrics with dedicated
Apriori-based searches have been additionally referred in
literature [38-40].

BicPAM: pattern-based biclustering
The proposed pattern-based biclustering approaches (Bic-
PAM) are an ordered composition of the three-stage:
mapping,mining (pattern discovery), and closing (or post-
processing) steps. BicPAM relies on both existing and
novel principles for each step. The core step is the mining
step, corresponding to the application of the target pat-
tern miners. This step is driven by the considered pattern
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discovery approach, target patterns and search properties.
The mapping step consists in the itemization of a real-
value matrix into an itemset matrix. This step is driven by
normalization and discretization criteria and it may use
different principles to handle outlier, numeric or missing
elements. Finally, the closing step consists on the post-
processing of the output patterns to affect the structure
and quality of the target biclusters. Figure 3 clarifies how
BicPAM relies on the existing pattern-based contributions
and pinpoints the novel principles proposed for each step.
The homogeneity criteria can be intentionally defined to

search for specific types and structures of biclusters and
to affect their quality. The bicluster type depends on the
allowed coherency patterns and on their orientation (row,
column or overall), the solution structure depends on the
number, size and positioning of biclusters, and, finally, the
quality defines the allowed noise associated with a single
bicluster or with a set of biclusters.
BicPAM is introduced in three following sections. First,

we describe the core steps of BicPAM (BicPAM outline).
Second, we go further and incorporate new methods to
deal with missing values and arbitrary high input levels
of noise (Affecting the quality of pattern-based biclusters).
Finally, we propose further algorithmic solutions for the
discovery of biclusters allowing symmetries and following
additive and multiplicative assumptions (Allowing more
flexible types of biclusters).

BicPAM outline
This section describes the structural behavior of BicPAM
by surveying principles for the mining, mapping and clos-
ing steps. These principles are either derived from the

existing pattern-based approaches for biclustering or from
advances in the pattern mining field.

Mining step
Understandably, non-constrained settings, where the
number of biclusters and their properties is not
known apriori, require efficient searches. Pattern mining
approaches have been tuned during the last decades to be
computationally efficient. Therefore, their adequate use
for biclustering is critical and depends essentially on three
points described below: 1) the adopted pattern-based
approach to biclustering, 2) the target pattern representa-
tion, and 3) the search strategy.

1) Pattern-based Approach

Definition 8. Let L be a set of ordinal items, a biclus-
ter is a sub-matrix (I, J) ⊆ A with its elements aij ∈ L
defining a pattern profile. A constant bicluster can follow:
i) an overall constant assumption where aij = c and c ∈ L,
ii) a column-based constant assumption where aij = cj
and cj ∈ L, or iii) a row-based constant assumption where
aij = ci and ci ∈ L.

Pattern-based biclustering under a constant assump-
tion is the ordinary case. DeBi [10], BiModule [13] or
GenMiner [15] only target this type of biclusters. These
approaches either rely on Frequent Itemset Mining (FIM)
or on association rules, which contrasts with traditional
approaches [9,18]. The support threshold defines themin-
imum number of rows in a bicluster. In the context of gene
expression, a low support is critical since high expression
coherency is only observed for small groups of genes and

Figure 3 BicPAM’s methodology. BicPAM relies on three steps that determine the type, quality and structure of the biclustering solutions. Within
each step, we make available principles based on existing contributions. Additionally, we propose key strategies within each step for the handling of
noise, the accommodation of more flexible types of biclusters (with additive, multiplicative and symmetric properties) and the composition of
alternative structures of biclusters.
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conditions. Additionally, a post-pruning to the frequent
itemsets can be performed in order to filter frequent item-
sets below a minimum number of columns and above a
maximum number of rows and columns.
From the point of view of an itemized database, the FIM-

based biclusters are perfect biclusters, that is, they do not
allow value-variations in any of its elements. Contrast-
ing, from the point of view of the input real-value matrix,
these biclusters can handle noise since two elements with
the same item may be numerically distant. The number of
items can be used to control the noise-tolerance. However,
regardless of the number of items, a common drawback
appears when two elements have similar real-values but
different items assigned. We refer to this drawback as the
items-boundary problem.
BiModule [11] and DeBi [10] are representative FIM-

based biclustering approaches. Since their running time
is comparable to greedy algorithms, they offer a simplis-
tic way to deal with noise and overlapping structures [13].
However, the items-boundary problem can lead to the
partitioning of large biclusters into smaller ones (with
many being filtered as they no longer satisfy the support
criterion).
In order to mine frequent itemsets with different prop-

erties, the notion of support of an itemset can be rede-
fined. RAP [14] uses a customized anti-monotonic range
support merit function. A FIM-based algorithm is used to
discover range patterns from real-value matrices without
the need for discretization. However, efficiency is strongly
penalized.
An additional option to pattern-based biclustering is

to derive biclusters from association rules. An associ-
ation rule, an implication between two itemsets, can
affect the properties of the corresponding bicluster as it
constrains the levels of confidence among rows. Option-
ally, correlation metrics can be adopted to augment the
confidence-support metrics with new interestingness cri-
teria. GenMiner [15] uses association rules to compose
biclusters. However, the adoption of association rules is
only preferred over FIM-based approaches when knowl-
edge regarding the dependencies across rows (or columns)
is available.
BicPAM uses frequent itemsets as the default pattern-

based option to biclustering. Range-based approaches are
only selected for small-to-medium datasets. Finally, in
the presence of domain knowledge (such as functional
groups of genes or dependencies on conditions), Bic-
PAM relies on association rules to compose biclustering
solutions.

2) Pattern Representations

The target pattern representation depends essentially
on: 1) the selected type and structure of biclusters, and

2) the post-processing needs. Efficiency is not a strong
criterion, since only subtle gains are observed for meth-
ods that target constrained representations, such as closed
and maximal representations.
The use of all frequent itemsets leads to biclustering

solutions with a high number of (potentially redundant)
biclusters (if contained by another bicluster), which can
degrade the performance of the mining and closing steps.
Contrasting, the use of maximal itemsets leads to biclus-
ters with the columns’ size maximized. Maximal itemsets
for biclustering are adopted in DeBi [10]. Such flattened
biclusters are particularly interesting when there is an
extension step to be performed to include new rows for
the discovered biclusters. However, since both vertical and
smaller biclusters are avoided, maximal-based biclusters
lead to incomplete solutions as they are just a subset of all
valid biclusters.
Finally, by using closed itemsets, we allow for over-

lapping biclusters only if a reduction on the number of
columns from a specific bicluster results in a higher num-
ber of rows. Note that to obtain maximal biclusters –
biclusters that cannot be extended without the need of
removing rows and columns – closed patterns need to be
used instead of maximal patterns. FIM-based BiModule
[13] and rule-based GenMiner [15] use closed itemsets as
the means to compose biclusters.
BicPAM uses frequent closed patterns as the default

representation. The set of all and maximal frequent pat-
terns are also made available in BicPAM. An illustration
on how different types of pattern representations lead to
structurally different biclustering solutions is provided in
Figure 4.

3) Search Strategies

The definition of the search setting depends essentially
on: 1) the fit of the search with the target biclustering task,
and 2) the chosen implementation.
The choice on whether to use Apriori-based [41],

pattern-growth [42] or combined approaches [43], mainly
depends on the dataset density and fixed support thresh-
olds. Dense matrices under low support thresholds ben-
efit from pattern-growth or combined methods. The
choice on whether to use a mining method that has a
vertical versus an horizontal data format [43] depends
essentially on the type of biclusters we are targeting.
If we want to find constant values across rows or on
both dimensions, we usually benefit from using searches
over horizontal data formats [35]. This is particularly
true for most GE matrices where the total number of
genes largely exceeds the total number of conditions. If
we want to find constant values across columns (when
n > m), a vertical data format should be the choice,
as the performance searches based horizontal formats
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Figure 4 Comparison of biclustering solutions using frequent itemsets, maximal frequent itemsets and closed frequent itemsets.

exponentially degrades with an increasing number of
items.
Several algorithms were developed for each of these

search strategies. However, their properties should be
carefully assessed, as their nature is most of the times
optimized towards specific sets of datasets. In the DeBi
[10], BiModule [11] and GenMiner [15] biclustering tasks,
Mafia [32], LCM [31] and CLOSE [33] are, respectively,
the algorithmic choices.
BicPAM makes available a variant of FP-Growth that

traces the set of transactions per frequent pattern [44]
(default option), Charm [45], AprioriTID [41] and Eclat
[43]. Finally, Carpenter [46] and Cobbler [47] are addi-
tional algorithmic choices in BicPAM to compose biclus-
ters with a large number of columns and for large-scale
datasets.

Mapping step
Normalization techniques are often required to enhance
differences across rows and/or columns. Alternative
methods have been reported [34,48]. BicPAM allows the
normalization criteria to be applied in the context of
a row, a column or the overall matrix. Additionally, it
makes available a zero-mean value to allow for symmetries
and to provide a simple setting for the approximation of
probabilistic distributions. In the presence of missing and
outlier elements, a masking bitmap can be used in order
to exclude them from the computation of the mean and
dispersion metrics.
Discretization is an additional key step for pattern-

based methods relying on itemset databases. Although
discretization may imply loss of information, it allevi-
ates the noise dilemma [26] and it is the cost to pay
for exhaustive searches. BicPAMmakes available multiple
discretization options with key implications on the tar-
get solution. Two axes are considered: 1) the number of
items (also referred as symbols) and 2) the target method
to map the normalized real-value matrix into a itemset

database. Increasing the number of items is commonly
used to improve quality, but it reduces the average size of
biclusters and the number of biclusters produced. A sensi-
tivity analysis on the impact of choosing different number
of items was performed in Bidens [34] and BiModule [13].
The three discretization methods made available in Bic-

PAM are illustrated in Figure 5. The use of fixed ranges
(potentially equal sized intervals between the observed
maximum and minimum) is the simplest discretization
option, but commonly leads to an accentuated weak dis-
tribution of items and is prone to the items-boundary
problem. The first problem can be corrected using a
percentage-based method for the depth partitioning of
items that leads to intervals containing approximately the
same number of items. Bidens [34] uses this equal-depth
partitioning method over a data context where outliers
are temporarily removed. Finally, alternative distributions
can be used to combine the properties of the previous
solutions, such as the setting proposed in Nordi [15].
By finding multiple suitable curves (for each row or col-
umn) or one suitable overall curve for approximating the
matrix, we can either use threshold methods or directly
compute the statistical cutoff points to create equally-
distributed areas. In the illustration, a Gaussian distribu-
tion is selected to minimize the loss of potentially relevant
biclusters.

Closing step
Similarly to mining and mapping options, post-processing
criteria can be used to minimize the two challenges of the
noise dilemma. One challenge results from a too restric-
tive noise tolerance, commonly associated with consid-
ering a high number of items, which leads to many
small sized biclusters. The other challenge is related with
heightened levels of noise allowance, commonly appear-
ing in binarized partitions and under a relaxed levels of
support or confidence. To handle these challenges and
to treat the problem of the explosion of valid biclusters
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Figure 5 Impact of discretization options available in BicPAM.

(commonly connected with overlapping biclusters), Bic-
PAM enables the use of criteria structured according to
three stages: 1) extension, 2)merging and 3) filtering.

1) Extension Options

Three optional and non-exclusive strategies can be used
to extend the discovered biclusters such that the result-
ing solution still satisfies some pre-defined homogeneity
criteria. First strategy consists on the use of statistical
tests to include rows or columns over each bicluster as
proposed in DeBi [10]. Second strategy relies on tradi-
tional approaches and on their merit functions for further
extensions as long as the solution satisfies either the intra-
or inter-bicluster homogeneity criteria. Finally, we pro-
pose a third strategy that uses patterns discovered under
more relaxed criteria (such as lower support-confidence
thresholds) to guide the extension step. When consider-
ing lower supports, new columns and rows can be added
to the original frequent patterns. Similarly, more relaxed
association rules, with less restrictive ways to group the
antecedent-consequent, can be used to guide the exten-
sion step. The use of simple thresholds, of statistical tests
or of merit functions to verify if the bicluster is valid can
either be computed using the discretized matrix (item
matchings) or, more interestingly, the distances from the
original real-value matrix.

2) Merging Options

Merging operations serve two goals: noise allowance
and overall biclustering structure manipulation. The first
goal is driven by the observation that when two biclusters
share a significant area it is probable that their merging
composes a larger bicluster still respecting some homo-
geneity criteria. Commonly, such decomposition is related
with the items-boundary problem or with a missing value.
The simplest criterion to allow the merging is either to
rely on the overlapping area (as a percentage of the smaller
bicluster), to compute the overall noisy percentage after
the merging, or to use advanced homogeneity criteria

(potentially relying on the real-values provided by the
input matrix). State-of-the-art procedures to efficiently
merge pattern-based biclusters include [49,50].

3) Filtering Options

Filtering is possible at two levels: 1) at the bicluster level,
and 2) at the row-column level. The first type of filter-
ing is required to remove duplicates and biclusters that
are contained in larger biclusters. The existence of biclus-
ters included in larger biclusters is a necessary result of
the extension-merging options and it is a common prob-
lem when adopting mining approaches that do not rely
on condensed pattern representations. Both DeBi [10] and
BiModule [13] provide alternative heuristics to efficiently
perform this type of filtering.
The second type of filtering can be used to exclude rows

or columns from a particular bicluster in order to inten-
sify its homogeneity. This is usually the case when a low
number of items is considered, leading to highly noise-
tolerant biclusters. For this purpose, similarly to extension
options, we can rely on three strategies: 1) use statisti-
cal tests on each row and column of a particular bicluster
in order to identify removals, 2) rely on existing greedy-
iterative approaches and maximize their merit functions
(which can imply a reduction on the size of biclusters), and
3) discover patterns under more restrictive conditions (as
higher support and confidence thresholds).

Affecting the quality of pattern-based biclusters
BicPAM options with impact on the solution quality
include:

– Mining step options, including the approach, the
support-confidence thresholds, and the pattern
representations;

– Mapping step options, including the number of items
and the normalization-discretization techniques;

– Closing step options, including the selected
extension, merging and filtering approaches, and
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their criteria thresholds (percentage of noise,
overlapping degree, statistical significance levels).

Below, we describe new strategies that BicPAM makes
available to handle varying levels of missing values and
input noise, and to compose multiple structures of
biclusters.

Handlingmissing values
The input matrices can have an arbitrary high number of
missing values, as it is common in GE matrices. A non-
treated missing value may result in the loss of a critical
row and of a column across one or more biclusters. Three
different strategies can be applied to treat missing values:
1) removal, 2) replacement, and 3) handling as a special
value. The simplest method is to remove the contain-
ing row or column (usually the dimension with smaller
size).
Many hole-replacing methods have been proposed

[51-53], alleviating the referred problem, although intro-
ducing additional noise that can significantly decrease the
homogeneity of the output biclusters. For this reason, we
propose the use of an additional item that is specially han-
dled according to a level of relaxation handled by the user,
as illustrated in Figure 6. The lowest constrained setting
(relaxed) replaces the missing item by all other adopted
items, which again results in transactions with varying
size. The medium constrained setting (δ-replace) con-
siders multiple items around its value-estimation. If the
difference between the estimated value and the centroid-
value of a discretization range is less than δ, then the item
assigned to the range is added. In BicPAM, the default
imputation method is based on the mean values for the
four nearest neighbor rows. BicPAM default δ distances
guarantee a lower bound of two items and an upper bound
of three items. The highest constrained setting (restrictive)
removes missing items.

Handling varying levels of noise
A key direction to pattern-based biclustering is to con-
sider multiple levels of noise by following one of the three
strategies illustrated in Figure 7. First strategy (reduced
number of items) hierarchically joins contiguous items
(items are viewed as being ordinal and no longer nominal)
to mine biclusters over matrices with different number of
items. Optimizations to this strategy can be made by col-
lapsing items only for some critical areas of the matrix
where the presence of biclusters is scarcer. Understand-
ably, the level of noise should be maintained by each
bicluster, so that closing steps can be adapted in respect to
the quality of the target bicluster. Second strategy (relaxed-
to-restricted extensions) considers varying levels of noise
only after the mining. For instance, the merging of con-
stant biclusters can follow a statistical test sensitive to the
closeness of different items (heuristics based on overlap-
ping rows-and-columns should also be considered). Third
strategy (multiple items) associates one or more items to
each element based on a parameterized threshold. Dif-
ferent criteria can be defined to assign a varying number
of items per element aij. Each element can be mapped
into two-to-three items based on the distance to their
centroids leading to transactions with multiple sizes.

Producing alternative biclustering structures
Since the number of biclusters is neither fixed nor
depends on the satisfaction of local coverage criterion,
pattern-based approaches provide a heightened flexibil-
ity for the composition of different biclustering structures.
A pattern-based solution is non-exhaustive, non-exclusive
and allows overlaps. The task of composing different
structures has been poorly addressed in literature, and
rather seen as the byproduct of biclustering methods
[1]. Below, we introduce a set of principles to compose
multiple structures made available in BicPAM.
For an exhaustive structure (either overall, across

rows or across columns), biclusters can be incrementally

Figure 6Mappingmethods to handle missings: relaxed, conservative (δ-replace) and restrictive alternatives to imputation.
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Figure 7 Strategies to deal with noise-relaxations.

merged following, for instance, an hierarchical criteria
based on the proximity and the area of biclusters, until all
the matrix is covered. If the goal is an exclusive structure
(either overall, across rows or across columns), a simple
strategy is to merge biclusters in order to reduce overlap-
ping across one or both dimensions and, additionally, to
filter biclusters that share rows or columns following an
relevance criterion (as size or noise level) until exclusiv-
ity is guaranteed. Closing options can be specifically used
to produce other alternative structures with sharp usabil-
ity (no need to change the core tasks of pattern-based
approaches).

Allowingmore flexible types of biclusters
Below, we extend BicPAM to consider more flexible
expression patterns: additive, multiplicative and symmet-
ric coherency.

Coherency under additive-multiplicative assumption
Definition 9. A bicluster (I, J) follows an additive model

if aij = c+ αi + βj + ηij, where c is the typical value within
the bicluster, αi is the adjustment for row i ∈ I, βj is the
adjustment for column j ∈ J and ηij is the noise associated
with the element. A bicluster (I, J) follows a multiplicative
model if aij = c′ × α′

i × β ′
j + ηij, which is equivalent to the

additive model when c = logc′, αi = logα′
i and βj = logβ ′

j .

We propose two pattern-based strategies for the discov-
ery of biclusters with non-constant models of coherency.
The first strategy is to use local normalization procedures
to correct row- or column-based differences and then to
map the task into the search for constant biclusters.
The second strategy, the default BicPAM option, is

to iteratively perform alignments on each column (or
row). This guarantees that all the alignments needed to
compose these biclusters are considered. Therefore, the

selected pattern miner is applied either m (or n) times,
leading to a higher computational complexity. Figure 8
illustrates this strategy.
An additive alignment over a target column yj can be

computed by adding for each element on the row xi the
difference between the maximum of the column and the
discretized valuemax(yj)−aij. A multiplicative alignment
over a target column yj can be computed by adding, for
each element on the row xi, the least common multiple
between the maximum of the column and the discretized
value lcm(max(yj), aij). The resulting number of items
under an additive assumption is in the worst case the
double of the number of items initially considered. The
number of final items under a multiplicative model is
the size of the lcm combinations across the initial items.
As illustrated in Figure 8, a distance-based δ-error can
be considered to gather close items in the multiplicative
model due to the lower probability of finding coherent
biclusters as a consequence of the resulting large number
of items.

Coherency under symmetrical assumption
A critical, but less studied, type of biclusters is biclusters
with coherent values under symmetrical assumption, also
referred as biclusters with sign-changes in literature [1].
Two rows or columns from a bicluster allowing symme-
tries may have similar absolute values differing in sign.
Such biclusters can simultaneously capture activation and
repression mechanisms within a biological process.

Definition 10. A bicluster (I, J) following a symmetric
model has either: i) symmetries on rows âij = ci×aij, where
ci ∈ {−1, 1} is the symmetry factor for each row of the
bicluster and aij ∈ R is a bicluster element defined accord-
ing to a constant, additive or multiplicative model, or ii)
on columns âij = cj × aij, where cj ∈ {−1, 1} is the column
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Figure 8 Pattern-based discovery of biclusters under additive andmultiplicative assumptions.

symmetry factor and aij ∈ R is an element of a bicluster
with coherent values.

For the purpose of finding biclusters with symmetries,
the normalization should satisfy the zero-mean criterion.
Additionally, if the number of considered items is odd,
there is one item being its own symmetric that must be
specially handled.
One option is to align the sign of activity of each row (or

column) in order to guarantee consistency of signals for a
target column (or row). The top example in Figure 9 illus-
trates this strategy. An iterative mapping for every column
(or row) is possible, although additional efficiency can be

achieved by stopping the search when all the sign combi-
nations have been achieved. Nevertheless, the worst case
requires the application of a pattern miner m times (or
n times). Note that filtering is a critical step needed to
remove potential duplicates resulting from repetitions of
alignments for subsets of rows (or columns).
The combination of this strategy with the search for

biclusters under an additive or multiplicative model can
be expensive (m×m times iterations). Therefore, BicPAM
makes available an additional option to combine the use of
the sign and of the additive or multiplicative adjustments
together for every column (or row). Thismodel (combined
sign and coherent model) is not equivalent to the previous

Figure 9 Pattern-based discovery of biclusters with symmetries for a constant coherency (a) and non-constant coherency (b).
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model (sign plus coherent model), since it assumes that
additions or multiplications are not absolute but depend
on the activity slope sign. Here, the value adjustment of a
particular element is also affected by the sign, which can
lead to an additional number of items. This strategy is
illustrated in the bottom example of Figure 9.

Algorithm 1: BicPAM core steps
Input: matrix, coherency, orientation, nrItems, patternMiner,

patternRep, normalizer, discretizer, missingsHandler,
noiseHandler, extender, merger, filter, stopCriteria /*default
arguments when absent*/

1 main begin
2 itemizedData ← runMappingStep(matrix, nrItems, normalizer,

discretizer, missingsHandler, noiseHandler, orientation);
3 biclusters ← runMiningStep(coherency, patternMiner,

itemizedData, patternRep, stopCriteria, nrItems, orientation);
4 return runClosingStep(biclusters, extender, merger, filter);

5 runMappingStep begin
6 mask ← getMissingsOutliersMask(matrix);
7 discData ← discretize(matrix, nrItems, normalizer, discretizer,

mask);
8 if isColumn(orientation) then discData ← transpose(discData)
9 treatedData ← appHandlers(discData, missingsHandler,

noiseHandler);
10 return createTransactions(treatedData);

11 runMiningStep begin
12 if isConstant(coherency) then freqItemsets ←

runFIM(patternMiner, itemizedData, patternRep, stopCriteria)
13 else freqItemsets ← runIterativeFIM(coherency, patternMiner,

itemizedData, patternRep, stopCriteria)
14 // recover columns and rows from frequent itemsets
15 return getBiclusters(freqItemsets, nrItems, orientation);

16 runClosingStep begin
17 biclusters ← merge(biclusters, merger);
18 biclusters ← filterBiclusters(biclusters, filter);
19 biclusters ← extend(biclusters, extender);
20 return increaseConsistency(biclusters, filter);

21 runIterativeFIM begin
22 factors ← ∅;
23 freqItemsets ← ∅;
24 foreach column j in itemizedData do
25 // different for additive, multiplicative and symmetric

coherencies
26 colAdjusts ← computeFactor(itemizedData[·][j],coherency);
27 if colAdjusts ∈ factors then continue
28 else factors ← factors ∪ colAdjusts
29 alignedData ← alignDataByRows(colAdjusts,itemizedData);
30 freqItemsets ← freqItemsets ∪ runFIM(patternMiner,

alignedData, patternRep, stopCriteria);
31 // simple combinatorial calculus to prune the search
32 if allCombinations(factors) then break
33 return freqItemsets;

34 runFIM begin
35 if estimateLimits(stopCriteria) then
36 // simple statistical calculus based on the frequency of items
37 (minRows,minColumns) ←

findLowerLimitsExpectations(data);
38 freqItemsets ← FIM(patternMiner, minRows, minColumns,

data, patternRep);
39 else
40 minSupport ← 0.5;
41 freqItemsets ← ∅;
42 whileminAreaPercentageAchieved(freqItemsets,10%) do
43 freqItemsets ← FIM(patternMiner, minSupport, data,

patternRep);
44 minSupport ← minSupport×0.8;
45 return freqItemsets;

BicPAM algorithm and complexity analysis
The algorithmic basis of BicPAM is described in
Algorithm 1. Although BicPAM follows a plug-and-
play style, default and data-driven parameterizations are
made available. In particular, lines 40-44 and 37 describe
BicPAM behavior in the absence of user-driven parame-
terizations. This is performed by either relying on esti-
mation procedures or on convergence criteria based on
thresholds such as the relative area covered by biclusters
or the minimum number of biclusters.
The computational complexity of BicPAM is bounded

by the pattern mining task and computation of similarities
among biclusters. For this analysis, we cover major com-
putational bottlenecks related with each one of the three
major steps of BicPAM. Within the mapping step: outlier
detection, normalization, discretization, and noise correc-
tion procedures (such as the assignment of multiple items)
are linear on the size of the matrix, �(nm). The optional
distribution fitting tests and parameter estimations to
dynamically select an adequate discretization procedure
are also �(nm). These tests and estimations rely on the
calculation of approximated statistical ratios [54]. Han-
dling missings by removing the respective element or by
replacing them by a special dedicated item is also �(nm).
However, when an imputation method is selected, the
complexity is upper bounded by �(hnm), where h is the
number of missing values. In BicPAM implementation,
the nearest neighbor rows and columns are computed for
the estimation of each missing value.
The cost of the mining step depends on two factors:

the complexity of the pattern miner and the need for
iterations for the discovery of non-constant profiles. The
cost of the pattern mining task depends essentially on:
the number and size of transactions (γnm, where γ ≥
1 captures the increase in size related with noise and
missings handlers), the frequency distribution of items
({L × Y } → N), the minimum support θ , the pattern rep-
resentation and the selected mining procedure. A detailed
analysis of this complexity has been attempted in liter-
ature [55] and it is out of the scope of this paper. The
reader should also keep in mind that there has been
proposals to guarantee the scalability of pattern min-
ers recurring to partitioning and approximation meth-
ods [12]. Let �(℘(γ , n,m, |L|, θ)), or simply �(℘), to be
the complexity of a pattern mining task. When there is
the need for the iterative application of the core min-
ing procedure, the overall search is bounded by �(d ×
℘), where d = min

((n
2
)
,m

)
when allowing symme-

tries, d = min
(( n

|L|
)
,m

)
when allowing shifts, and d =

min
(( n

�lcm
)
,m

)
when allowing scaling factors.

The cost of the closing step depends essentially on two
factors: the complexity of computing similarities among
biclusters (required for merging and filtering biclusters)
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and the complexity of extending and reducing biclus-
ters. To compute similarities a tree structure is created
where each node represents a gene and each leaf corre-
sponds to a bicluster. Only biclusters sharing a branch
over a threshold based on the input overlapping degree are
candidates for merging and filtering. Filtering a bicluster
results in the removal of its leaf and dedicated nodes.
Merging two biclusters results on the combination of the
target branches. These tasks have an average complexity
of �

(( k
k/2

)
r̄s̄

)
, where k is the number of biclusters and

r̄s̄ their average size. Extending biclusters relies on quick
tests based on the coherency of each new column or row
and therefore the complexity of this task is respectively
�(k′r̄m) or �(k′ns̄), where k′ is the number of biclusters
after merging and filtering. Removing rows or columns
from biclusters is �(k′r̄s̄).
In this context, the complexity of BicPAM is bounded

by �
(
hnm + d℘ + ( k

k/2
)
r̄s̄ + k′(r̄m + ns̄)

)
, which for set-

tings resulting in a large number of biclusters after the
mining step (k � k′) is approximately �

(
d℘ + ( k

k/2
)
r̄s̄

)
.

Results
In this section, we present an extensive experimental eval-
uation showing that BicPAM is effective and computa-
tionally efficient. BicPAM was implemented in Java (JVM
version 1.6.0-24). The following experiments were run in
an Intel Core i3 1.80 GHz with 6 GB of RAM.
The results were collected and analyzed in four steps.

Section “Comparison of biclustering approaches in syn-
thetic data” compares the performance of BicPAM against
state-of-the-art biclustering approaches. In Section “Per-
formance analysis in synthetic data”, BicPAM’s behavior
is extensively assessed in synthetic datasets with vary-
ing size, noise, sparsity and background distributions. The
biological relevance of BicPAM’s results is analyzed in
Section “Results in real data”. Finally, Section “Compar-
ison of pattern-based biclustering approaches” goes fur-
ther on comparing BicPAM and its pattern-based peers.
Below, we describe the evaluation metrics and data set-
tings used.
Evaluation metrics. Biclustering solutions have been

assessed using multiple evaluation criteria. In the
presence of hidden/planted biclusters, H = {H1, ..Hg},
clustering metricsa, match scores [2,58] and relative non-
intersecting area (RNAI) [59,60] have been used. Match
scores (MS) [58] assess the similarity of solutions based
on the Jaccard index. MS(B,H) defines the extent to
what found biclusters match with hidden biclusters, while
MS(H,B) reflects how well hidden biclusters are recov-
ered (1). RNIA [59]measures the overlap area between the
hidden and found biclusters. To distinguish if several or
few of the found biclusters cover a hidden bicluster, clus-
tering error (CE) [60] is a critical extension. To take into

account the number of biclusters in both sets, Hochreiter
et al. [2] introduced a consensus score by computing sim-
ilarities between all pairs of biclusters (2). We refer to this
metric as FABIAConsensus (FC). Let S1 and S2 be, respec-
tively, the larger and smaller set of biclusters from {B,H},
and MP be the assigned pairs using the Munkres method
based on overlapping areas [61], MC and FC are defined
as:

MS(B,H) = 1
|B|�(I1,J1)∈Bmax(I2,J2)∈H

|I1 ∩ I2|
|I1 ∪ I2| , (1)

FC(B,H) = 1
|S1|�((I1,J1)∈S1,(I2,J2)∈S2)∈MP

× |I1∩I2|×|J1∩J2||I1|×|J1|+|I2|×|J2|−|I1∩I2|×|J1∩J2| .
(2)

In the absence of hidden biclusters, merit functions
can be used as long as they are not biased towards the
merit criteria used within the approaches under compari-
son. Examples include the commonly used mean squared
residue (MSR) [62] and its extension [16], or the Pearson’s
correlation coefficent [59] sensitive to shifting-scaling
properties. Finally, domain-specific evaluations can be
used by computing statistical enrichment p-values in bio-
logical contexts [10,63].
Data settings. Gene expression data and two sets of

synthetic datasets were used to evaluate BicPAM perfor-
mance. The first set corresponds to the datasets generated
by Hochreiter et al. [2]. These datasets simulate specific
characteristics of gene expression data, such as heavy tail
properties, using three settings: multiplicative models and
additive models under signals according to N

(±2, 0.52
)

and N
(±4, 0.52

)
distributions [64]. Each setting has 100

datasets with 1000 genes, 100 conditions and 10 planted
biclusters.
A second set of synthetic datasets with varying size

and planted biclusters with varying degrees of expression
was generated in the context of this work [65] (settings
described in Table 1). We varied the size of the matrices
up to 4.000 rows and 400 columns, maintaining the pro-
portion between rows and columns commonly observed
in gene expression data. The number and shape of the
planted biclusters were also varied. The properties of
the generated matrices were carefully chosen in order to
follow properties from similar studies [10,13].
The generated matrices were parameterized according

to pre-specified number of items (|L| ∈ {5, 10, 20}) and to
an inputed bicluster type assumption (constant, additive,
multiplicative and/or symmetric). The number of rows
and columns for each bicluster followed a Uniform dis-
tribution over the ranges presented in Table 1. We allow
for overlapping biclusters, which can difficult the recov-
ery of the original planted biclusters. Finally, a noise factor
was randomly added over the background values. This
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Table 1 Properties of the generated set of synthetic datasets

Matrix size (�rows×�cols) 100× 30 500 × 60 1000 × 100 2000 × 200 4000 × 400

Nr. of hidden biclusters 3 5 10 15 20

Nr. columns in biclusters [5,7] [6,8] [6,10] [6,14] [6,20]

Nr. rows in biclusters [10,20] [15,30] [20,40] [40,70] [60,100]

Area of biclusters 9.0% 2.6% 2.4% 2.1% 1.3%

noise factor is up to ±15% of the range of values (e.g.
aij ← aijU(−1.5, 1.5) when 10 items are available).
For each of these settings we instantiated 40 matrices:

20 matrices with background values following a Uniform
distribution, U(1,|L|), and 20 matrices with background
values generated according to a Gaussian distribution,
N

( |L|
2 , |L|

6

)
. The performance of BicPAM is an average

across these 40 matrices.

Comparison of biclustering approaches in synthetic data
We selected five state-of-the-art approaches able to dis-
cover biclusters under additive-multiplicative assump-
tions: FABIA with sparse prior option [2], Bexpa [66], ISA
[67], Plaid [6] andOPSM [19]. Additionally, we considered
CC [62], Samba [9], xMotifs [18], and three pattern-based
biclustering approaches: BiModule [13], DeBi [10] and
RAP [14]. Although the last six biclustering approaches
use more simplistic homogeneity criteria, their inclusion
is critical to study the biological significance of BicPAM’s
solutions and to test BicPAM’s performance improve-
ments when considering biclusters with constant models.
We used the following software to run these meth-

ods: R packages fabia [68] and biclust [69], BicAT [70],
(Evo-)Bexpa [66] and Expander [71]. The specified num-
ber of biclusters for FABIA (with and without sparse
equation), Bexpa, CC and ISA (number of starting points)
was the number of hidden biclusters plus 10%: |H| × 1.1.

Note that this required specification can be used to guide
the search space exploration against other biclustering
approaches and optimistically bias FABIA consensus (FC)
levels. The default number of iterations for OPSM was
varied from 10 to 200 iterations. The remaining meth-
ods were executedwith default parameterizations. For this
comparison, BicPAM was parameterized with closed pat-
terns discovered using discretization methods with three
distinct sets of items (|�| ∈ {3, 5, 7}), under a simple
merging option (70% overlap) and filtering of biclusters
based on an overlapping area over 30% against a larger
bicluster. Additionally, two items were assigned to values
near item-boundaries, leading to an increase in the size of
transactions of 8-11%. The support threshold was incre-
mentally decreased 10% and stopped when the discovered
biclusters covered a minimum area of the input matrix
(>5%×|X| × |Y |).
The ability of these approaches to retrieve the hidden

biclusters using FABIA data settings is synthesized in
Figure 10. FC(B,H)wasmeasured across the 100matrices
generated for each setting. BicPAM is the best performer
for biclusters following additive models with different
signal properties (Wilcoxon-test at 0.01%) and, together
with FABIA, the best option for multiplicative models.
The exhaustive nature of BicPAM searches and the abil-
ity to rely on multiple discretization levels without risk of
introducing noise (by assignment multiple items for val-
ues near ranges-boundaries) support these observations.

Figure 10 FC levels across biclustering approaches using FABIA datasets.
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Figure 11Match scores across biclustering approaches using FABIA datasets.

FABIA is a competitive non-exhaustive alternative, sensi-
tive to the planted noise. Nevertheless, it requires prior
knowledge regarding the number of biclusters. Since ISA
is tunned to discover biclusters with gradual changes
on values, its scoring schema to find modules with self-
consistency is not well suited to discover biclusters mod-
eled by additive signals. Plaid is able to locally identify
additive factors. Understandably, the set of approaches
not able to discover biclusters with scaling and shift-
ing factors is considerably less effective. The FC levels
of OPSM are strongly penalized since OPSM outputs
a large number of biclusters with varying sizes (includ-
ing biclusters with either small number of genes or
conditions).
A comparison of match score levels across bicluster-

ing approaches when using the FABIA generated datasets
is provided in Figure 11. Results confirm the superior
performance of BicPAM both in terms of the MS(B,H)

score (correctness) and MS(H,B) score (completeness).
BicPAM is able to exhaustively mine the solution space
and combine multi-level discretization thresholds. The
average efficiency levels of BicPAM show its ability to
perform exhaustive searches in useful time for compu-

tationally complex settings. FABIA is the most efficient
approach.
Figures 12 and 13 assess the ability of the analyzed

biclustering approaches to discover planted biclusters
with different coherency criteria (using an alphabet with
10 levels of expression) and varying the number of rows
and columns (planted according to an Uniform distribu-
tion). Figure 12 shows that BicPAM’s performance (in the
absence of extensions to discover non-constant biclusters)
is superior against the three peer pattern-based meth-
ods. Figure 13 captures relevant changes in performance
when considering additive and multiplicative coheren-
cies. In order to promote the readability of these charts,
we excluded the performance of the approaches not pre-
pared to discover biclusters under these assumptions.
Results confirm the superior performance of BicPAM in
terms of MS(B,H), that is, the majority of the discov-
ered biclusters are well described by the hidden biclusters
(correctness), and MS(H,B), that is, the majority of the
hidden biclusters can be mapped into a discovered biclus-
ter (completeness). Although FABIA is the second choice
for non-constant coherency, it is not prepared to deal with
overlaps and it accommodates high levels of noise since

Figure 12Match scores of biclustering approaches using datasets with constant models.
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Figure 13Match scores of biclustering approaches using datasets with non-constant models.

it is not prepared to differentiate all of the 10 levels of
expression, resulting in biclusters with a larger number of
false positive genes.
Finally, Figure 14 shows that, although all approaches

are scalable for medium-sized matrices, efficiency dete-
rioration is faster for OPSM, BicPAM and CC. The effi-
ciency of peer pattern-based approaches is slightly worse
than that of BicPAM as they do not seize the benefits of
FP-growth searches.

Performance analysis in synthetic data
In this section we study the efficiency limits of BicPAM.
Then we assess the ability of BicPAM to discover differ-
ent types of biclusters for data with varying regularities.
Finally, we go further on understanding the impact of
using different strategies related with the mining, map-
ping and closing steps.

Efficiency limits
To show the boundaries on BicPAM efficiency we consid-
ered matrices with 10.000 rows (magnitude of the human
genome). The results are provided in Figure 15. We var-
ied the number of conditions, the number of items (|L| ∈
{5, 7}) and the underlying coherency assumptions for this
assessment. We consider the default merging procedure
for the closing step. We planted 15 biclusters to occupy
2% of the area of the generated matrices and used Charm
algorithm [45], an efficient pattern miner to deliver closed

patterns (maximal biclusters). Generally, we observe that
BicPAM is able to discover constant biclusters for matri-
ces up to 10.000 × 350 and additive/multiplicative biclus-
ters for matrices up to 10.000 × 200. Understandably
the number of items has strong impact in efficiency
as it defines the density of the correspondent itemset
database and, therefore, the complexity of themining step.
Note, additionally, that the extensively studied scalabil-
ity principles based on extensions over pattern mining
methods – parallelization, distribution, streaming and
error-bounding principles [12] – can be easily included in
themining step of BicPAM to guarantee its scalability over
harder data settings.

Recovery of (non-)constant biclusters
Although BicPAM relies on exhaustive searches, its per-
formance highly depends on the ability to deal with
noise, discretization errors and coherency assumptions.
Figure 16 shows BicPAM’s performance with a parameter-
izable number of items for the datasets generated under
a constant assumption. FC levels are attractive, although
they are penalized by the exclusion of rows due to the
planted noise, allowed overlapping among planted biclus-
ters together with the fact that the number of discovered
biclusters is usually higher than the number of planted
biclusters.
A smaller number of items turns the matrix denser,

decreasing the efficiency bounds of BicPAM. Using a
similar experimental setting, Figure 17 illustrates the

Figure 14 Efficiency of biclustering approaches using the generated datasets.
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Figure 15 Efficiency bounds of BicPAM for 10000 rows (magnitude of the human genome).

performance of BicPAM for datasets with planted biclus-
ters with an additive assumption. Although the observed
FC scores are high, they are worse than for constant
datasets due to the higher probability of background
values to form a non-planted additive bicluster. Inter-
estingly, although a na?ve search for additive biclus-
ters would cost as much as |Y | times as the search
for constant biclusters, the considered pruning fosters
efficiency.
Finally, Figure 18 illustrates BicPAM’s performance

under a multiplicative assumption. Contrasting with the
previous analysis, FC levels decrease for the larger matri-
ces as the multiplicative factor is more prone to local
mismatchings. This problem can, however, be corrected
through closing options. Similarly to the search for
additive biclusters, BicPAM seizes efficiency gains by
pruning the search space. Additionally, the multiplica-
tive assumption is structurally more efficient than its
additive peer since the number of spurious biclusters
is considerably low due to the broader range of items
observed within each iteration, which leads to sparser
matrices.
To complement previous analysis, Figure 19 provides

BicPAM’s MS(B,H) levels for different levels of expres-
sion. The observed MS levels are higher than FC lev-
els due to the absence of penalizations of outputting
more biclusters than the number of planted biclusters.
In particular, MS levels for medium- to-large datasets
are, respectively, above 95%, 91% and 87% for constant,
additive and multiplicative.
A detailed look of BicPAM’s performance, when con-

sidering 7 items and default noise handling, merging and
filtering options, is provided in Table 2. The results are
organized according to bicluster type, matrix size (and
structure of planted biclusters) and underlying distribu-
tion of background values. The slightly worse perfor-
mance when the input values are generated by a Gaussian
distribution is not related with the increased probability of
background values to form non-planted biclusters (since
values are properly discretized), but with the increased
difficulty of modeling the planted biclusters with Uniform

values. We found MS(B,H) to be lower than MS(H,B)

since the exhaustive nature of BicPAM leads to at least
one found bicluster with a direct correspondence to each
hidden bicluster.

Mining options
Figure 20 illustrates the impact of the algorithmic choice
in the efficiency of BicPAM. The threemain paradigms for
frequent itemsetmining (Apriori, FPGrowth, and vertical-
based Eclat) were tested based on implementations from
SPMF [72] software. These methods were extended in
order to be able to deliver the transaction set support-
ing each frequent itemset. For this assessment we used
a discretization step with 10 items and constant planted
biclusters based on all frequent patterns. The results
were collected for the 1000 × 100 generated dataset
setting. FPGrowth and Eclat are the most competitive
choices when dealing with very small support thresh-
olds. In particular, FPGrowth is the best performer for
the setting used for supports near and below 1%. Finally,
Apriori is the best option for medium-to-large support
levels.
The impact of choosing alternative pattern representa-

tions (simple, closed, maximal) in efficiency andMS levels
is presented in Figure 21. For this assessment we used
three distinct methods: FPGrowth [42] to output simple
patterns, Charm [45] to output closed patterns (maximal
biclusters) and CharmMFI [45] to output maximal pat-
terns. Similarly, we considered the 1000× 100 setting and
10 items.
Three main observations can be retrieved from this

analysis. First, the use of maximal patterns for bicluster-
ing should be avoided as it gives preference to biclusters
with a large number of columns and discards biclusters
with a subset of these columns (even when they have a
larger number of rows). Understandably, this penalizes the
MS(H,B) levels. MS(B,H) scores are not so affected as
each maximal bicluster is covered by a planted biclus-
ter. Second, the use of simple patterns for biclustering
can degrade the MS(B,H) in comparison with closed
patterns. This score penalizes the discovery of biclusters



Henriques and Madeira Algorithms for Molecular Biology  (2014) 9:27 Page 18 of 30

Figure 16 Performance of BicPAM under a constant assumption.

Figure 17 Performance of BicPAM under an additive assumption.

Figure 18 Performance of BicPAM under a multiplicative assumption.

Figure 19Match score levels of BicPAM under constant, additive andmultiplicative assumptions.
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Table 2 FC andMS levels of BicPAM in different settings (mean and variance from 20 datasets)

100× 30 500× 60 1000 × 100 2000 × 200

Metric Coherency Normal Uniform Normal Uniform Normal Uniform Normal Uniform

FC

Constant 0.862±0.017 0.930±0.014 0.884±0.018 0.956±0.007 0.909±0.017 0.949±0.006 0.907±0.014 0.948±0.011

Additive 0.782±0.021 0.831±0.008 0.834±0.014 0.888±0.007 0.845±0.018 0.897±0.007 0.827±0.015 0.887±0.006

Multiplicative 0.762±0.028 0.794±0.013 0.790±0.019 0.825±0.014 0.785±0.020 0.840±0.011 0.767±0.020 0.819±0.015

MS(B,H)

Constant 0.923±0.018 0.974±0.007 0.931±0.012 0.968±0.005 0.935±0.010 0.984±0.005 0.944±0.011 0.987±0.008

Additive 0.895±0.017 0.945±0.006 0.925±0.012 0.963±0.003 0.913±0.008 0.981±0.007 0.917±0.011 0.974±0.006

Multiplicative 0.902±0.019 0.958±0.014 0.906±0.015 0.953±0.009 0.910±0.015 0.941±0.008 0.886±0.019 0.948±0.010

MS (H,B)

Constant 0.956±0.013 0.984±0.006 0.960±0.007 0.981±0.004 0.961±0.004 0.996±0.002 0.957±0.009 0.993±0.002

Additive 0.955±0.012 0.997±0.001 0.959±0.006 0.997±0.002 0.955±0.004 0.995±0.002 0.957±0.007 0.995±0.003

Multiplicative 0.937±0.015 0.966±0.008 0.924±0.012 0.968±0.008 0.923±0.010 0.963±0.009 0.927±0.013 0.974±0.007

contained in larger planted biclusters, even when the dis-
covered biclusters have a heightened homogeneity. Third,
the search for closed andmaximal patterns is slightlymore
efficient than the search for simple patterns as a result of
additional pruning procedures. These observations sup-
port the use of closed patterns. Furthermore, they corre-
spond to maximal biclusters, which are in general the aim
of effective biclustering algorithms [1,13,73].

Mapping options
In order to assess the impact of the proposed mapping
strategies to handle missing values (Figure 6), we ran-
domly removed a varying number of elements from the
generated matrices for the 1000 × 100 setting. Figure 22
illustrates how the performance of BicPAM (using Charm
and 10-item discretization) varies with a percentage of
missings ranging from 0 to 10% (that is, from 0 to 10.000
elements). Note that 10% is already considered a very crit-
ical number of missings that may compromise the ability
to retrieve the true biclusters. We observe that this prob-
lem can be mitigated recurring to the proposed BicPAM
missing handlers.
When analyzing the results in Figure 22, three obser-

vations can be retrieved. First, MS(B,H) under the base-
line strategy (remove the missings) significantly decreases
from 97% to near 70% when the percentage of missings
reaches 10%. Although this solution is easily implemented

in BicPAM (removing an element from respective trans-
actions), the majority of existing biclustering algorithms
only allow for removals on the columns or the rows where
a missing occurs (impracticable even in the presence of a
few missings as illustrated). Second, the ability to retrieve
the planted biclusters increases when considering the
nearest 2-3 values against the strategies that consider the
closest value only or all the possible values (relaxed strat-
egy). This is justified by two factors: 1) when estimating
more than one value for a missing, there is an increased
chance to recover the original value and, therefore, of not
damaging a planted bicluster; 2) when considering all the
possible values for a missing, there is an increased amount
of noise that is added and can lead to the emergence of
false biclusters. Third, although inserting multiple values
to replace a missing is an attractive option in terms of
accuracy, its efficiency is penalized as the itemized matrix
becomes denser (consistent with the number of discov-
ered biclusters). Still, when considering only the closest
2-3 values, scalability is maintained for levels of noise up
to 10%.

Closing options
We planted additional levels of noise to evaluate the
closing options. This was performed by changing the
values of specific elements by a randomly distant value
(distance >25% of the domain range). The percentage of

Figure 20 Comparison of pattern mining algorithms for the 1000 × 100 setting.
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Figure 21 Impact of choosing alternative pattern representations over the 1000× 100 data setting.

noisy elements was varied from 0 to 10%. We used the
1000 × 100 setting, Charm and a total of 10 items.
Figure 23 describes the impact of alternative strategies

to extend biclusters. When no noise is planted, merging-
based strategies are able to achieve slightly higher match-
ing scores since they can cover elements originally missed
due to discretization errors or by the allowed overlapping
among planted biclusters. When increasing the planted
noise, the presence of extension options is critical tomain-
tain interesting accuracy levels. Both the inclusion of new
rows and columns (recurring to statistical tests or by low-
ering the support of pattern miners) and the merging of
the resulting biclusters are able to maintain match scores
above 90% (20 percentage points higher than the baseline
option).
Figure 24(a) illustrates the impact of merging biclus-

ters with large overlapping areas assuming a level of
planted noise of 5%. The baseline case corresponds to an
overlapping area of 100%. When relaxing the overlapping

criteria, MS(B,H) (and also MS(H,B)) increases, as the
merging step allows for the recovery of missing rows and
columns. However, this improvement in behavior is only
observable until a certain overlapping threshold (near 70%
for this experimental setting). Match scoring decreases
below this threshold. A correct identification of the opti-
mum threshold can lead to significant gains (near 15
percentage points for this experimental setting).
Finally, the use of filtering strategies can also lead to

an enhanced ability to recover the planted biclusters.
Although the filtering of biclusters with weak homogene-
ity impacts accuracy, this analysis targets the removal of
rows and columns (on each bicluster) that do not satisfy
a specific homogeneity threshold. Figure 24(b) illustrates
the impact of removing potentially false rows and columns
assuming a level of planted noise of 2%. The impact is only
significant when considering a low-to-medium number of
items, since for these cases filtering is able to correct the
errors related with the large ranges of values per item that

Figure 22 Comparing the handling of missings for data with varying levels of noise.
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Figure 23 Impact of extending biclusters for data with varying levels of noise.

lead to false biclusters. Similarly to the merging option,
an increase in the matching score is observed when com-
pared to the baseline case (an homogeneity degree of 0%)
up to 75%, given by 1−MSR [62]. From this upper thresh-
old the match scores decrease since the homogeneity
criteria becomes too restrictive.

Results in real data
To assess the performance of BicPAM in real data, we
compared the biological significance of BicPAM’s solu-
tions against state-of-the-art biclustering solutions using
three distinct gene expression datasets [74,75]: 1) dlblc
dataset (660 genes, 180 conditions) to study responses
to chemotherapy [76], 2) hughes dataset (6300 genes,
300 conditions) to characterize nucleosome occupancy
[77], and 3) gasch dataset (6152 genes, 176 conditions)
to measure Yeast responses to environmental stimuli
[78]. For the gasch dataset, we considered the multiple
time points per condition and averaged the replicates of
the steady state. The missing values were not removed
since BicPAM can cope with them. For the state-of-the-
art biclustering approaches, we maintained the param-
eterizations used in the previous section. In particular,
pattern-based approaches were parameterized with mul-
tiple levels of expression (|L| ∈ {4..7}). BicPAM output
include constant, additive, multiplicative and symmet-
ric biclusters, discovered under different closing options.
The selected closing options were: merging (70% over-
lap); relaxed merging (55% overlap) with filtering of rows;

and tight merging (90% overlap) with extensions on rows
that appear in another bicluster sharing a minimum 50%
of the conditions. In what follows, we analyze the results
obtained focusing the three following points: 1) func-
tional enrichment, 2) transcriptional regulation, and 3)
coherence.

Functional enrichment
The biological relevance of the biclusters from the differ-
ent biclustering solutions was obtained using the Gene
Ontology (GO) annotations computed by GoToolBox
[79]. To discover the enriched GO terms, we computed
the p-values obtained using the hypergeometric distribu-
tion to access the over-representation of a specific term. In
order to consider a bicluster to be significant, we require
its genes to show enrichment in one or more of the “bio-
logical process” ontology terms by having a (Bonferroni
corrected) p-value below 0.05.
Table 3 provides a compact view on the biological sig-

nificance of the compared approaches. BicPAM is able
to discover the largest number of (non-similar) biclusters
with significantly enriched terms for each dataset. The
analysis of these terms against the significant terms found
in other biclustering solutions shows the completeness of
BicPAM’s solutions (as they cover themajority of the gath-
ered biological functions per dataset), together with the
exclusivity and relevance of BicPAM solutions (as they
model biclusters with significantly enriched GO-terms
that are not discovered by the remaining approaches).

Figure 24 Impact of merging and filtering (reduction) for the 1000 × 100 setting. (a)Merging for varying overlapping degrees (5% of planted
noise). (b) Filtering for varying homogeneity degrees (2% of planted noise).
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Table 3 Comparing the biological relevance and novelty of different biclustering solutions

Dataset Approach �Bics Avg. �Genes
× �Conds

�Bics sig.
enriched

Coverage and exclusivity of enriched GO terms

dlblc

BicPAM 56 83×7 43 (77%) Highest number of exclusively enriched terms (partial list in Table 4).

(human

BiModule 322 62×4 79 (25%) Absence of closing options leads to redundant and less significant terms.

genome)

DeBi 31 73×6 21 (68%) Loss of relevant terms due to the inability to discover all maximal biclusters.

CC 10 41×33 5 (50%) Exclusive bicluster related with circulatory & cardiovascular system development.

ISA 72 23×8 8 (11%) Exclusive bicluster for extracellular structure organization and heparin binding.

Plaid 3 12×49 1 (33%) Majority of genes modeled in a single background bicluster with general terms.

Fabia 10 79×35 6 (60%) Small bicluster with superior enrichment of antigen binding functions.

Bexpa 10 16×87 2 (20%) Small sets of genes supported by large number of conditions.

Samba 100 17×6 18 (18%) Dedicated terms for antigen processing, peptide cross-linking and disassembly.

OPSM 12 128×5 5 (42%) High variance of �genes and �conditions; some of the biclusters with low �genes
(coherency across high �conditions) have exclusive significantly enriched terms.

hughes

BicPAM 47 360×7 38 (81%) Exclusive enriched terms due to flexible coherency and post-processing criteria.

(yeast

BiModule 219 285×4 43 (20%) Terms with lower sig. than terms from noise-tolerant BicPAM solutions.

genome)

DeBi 28 317×7 21 (75%) Terms observed across very small sets of conditions (≤5) are not enriched.

CC 10 228×58 6 (60%) GO terms covered by BicPAM constant biclusters.

ISA 8 120×4 5 (63%) Small biclusters with exclusive significance GO terms: spindle pole and karyogamy.

Plaid 8 78×39 3 (38%) One bicluster with higher significance for fungal-type cell wall assembly.

Fabia 10 210×49 5 (50%) Higher significance observed for actin cortical patch and oxidoreductase GO-terms.

Bexpa 72 42×49 1 (10%) Low number of enriched terms (probably due to the low �genes per bicluster).

Samba 120 18×9 11 (9%) Enriched terms covered by pattern-based biclustering solutions.

OPSM 6 531×4 3 (50%) Exclusive bicluster for the negative regulation of metabolic processes.

gasch

BicPAM 149 411×8 123 (83%) Large diversity of highly significant GO-terms (partial list in Table 4).

(yeast

BiModule 653 287×4 159 (24%) Large but incomplete set of GO-terms as it excludes non-constant biclusters.

genome)

DeBi 82 310×6 61 (74%) Significance of terms slightly differ than BicPAM due to the handling of noise.

CC 10 203×79 7 (70%) Enriched terms appear in BicPAM solutions with higher significance.

ISA 23 292×22 18 (78%) Enriched terms covered by pattern-based biclustering solutions.

Plaid 6 48×12 3 (50%) Biclusters (apart from background layer) with lower enrichments than peers.

Fabia 10 310×41 8 (80%) Bicluster with higher sig. for specific proteasome complexes.

Bexpa 10 63×29 3 (33%) The few biclusters with deviation in size (higher �genes) are significant.

OPSM 16 212×8 11 (69%) One bicluster with higher significance for pre-ribosome functions.

Although peer pattern-based solutions also find a large
number of biclusters with significantly enriched terms,
these terms have lower significance. This is due to the
fact that these approaches do not provide noise-correction
procedures tominimize the item-boundaries problem and
cannot discover non-constant biclusters. Additionally, the
remaining biclustering solutions provide incomplete sets
of GO-terms since their algorithms are not able to deliver
flexible biclustering structures with multiple coherencies.
Moreover, some of these approaches are neither able to
discover biclusters with multiple levels of expression (or
homogeneity levels) nor postprocess the raw biclustering
solutions. Still, some of the compared approaches were
able to deliver a few small biclusters whose terms are more

significant than those found with BicPAM. Subsequent
analyzes (Tables 4, 5 and 6) provide further empirical evi-
dence for the relevance, completeness and exclusivity of
BicPAM solutions.
Table 4 shows the number of biologically significant

biclusters found by BicPAM when using closing strate-
gies. In this analysis, a bicluster is considered to be highly
significant if it has at least one enriched term with a cor-
rected p-value below 0.01. To complement this analysis,
Table 5 lists some of the most significant biological pro-
cesses associated with these enriched terms for each data
setting [80].
Table 6 shows an illustrative set of the found pattern-

based biclusters with statistical relevance. Such biclusters
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Table 4 Summary on the biological relevance of BicPAM’s biclusters

Dataset Closing option �Bics Avg. Area �Filtered bics �Highly sig. bics �Sig. bics

merging 4803 81×7 28 22 5

dlblc relaxedmerging+ reductions 980 83×9 24 19 3

tightmerging + extensions 7652 79×6 27 25 2

merge 6311 432×6 36 19 12

hughes relaxedmerging + reductions 1259 492×7 22 12 8

tightmerging + extensions 9210 398×5 39 22 11

merge 27031 392×8 89 66 12

gasch relaxedmerging + reductions 2177 486×11 67 49 11

tightmerging + extensions 52123 367×7 92 79 9

Table 5 Terms highly enriched in BicPAM’s biclusters

Dataset ID Terms Bicluster with
best p-value

�Genes

dlblc

Dl1 translational elongation; cytosolic part; translational initiation 4.49E-5 81

Dl2 Golgi apparatus; MHC protein complex 5.40E-5 83

Dl3 defense response; receptor activity; single organism signaling; vacuole; cell communication 4.91-5 162

Dl4 immune response; response to interferon-gamma 1.06E-4 58

Dl5 immune system process 1.27E-4 52

Dl6 response to interferon-gamma; cellular response to chemical stimulus; response to cytokine stimulus 0.001 60

Dl7 membrane-enclosed lumen; cell division; cell cycle process 2.92E-12 81

Dl8 small molecule binding; catalytic activity; cell cycle process 6.14E-8 108

hughes

H1 mitochondrion organization; organellar ribosome; mitochondrial matrix; mitochondrial translation 2.70E-39 416

H2 cell periphery; cell wall constituent; oxidoreductase activity; cell wall organization; sexual sporulation 1.73E-4 370

H3 ribonucleoprotein complex biogenesis; nucleus 3.61E-30 426

H4 cellular amino acid metabolic/biosynthetic process; carboxylic acid metabolic/biosynthetic process 1.3E-25 581

H5 organonitrogen compound metabolic process; sulfur compound metabolic process 1.62E-4 504

H6 macromolecular complex; intracell. non-membrane-bounded organelle; membrane-enclosed lumen 4.80E-14 512

gasch

G1 nitrogen compound metabolic proc.; carboxylic/organic amino acid processes; structural cytoskeleton 1.84E-16 434

G2 cellular carbohydrate metabolic process; cytoplasm 2.01E-7 265

G3 generation of precursor metabolites and energy; tricarboxylic acid cycle 1.16E-14 954

G4 endomembrane system; retrotransposon nucleocapsid; pore; viral procapsid maturation 4.34E-6 102

G5 nucleolus; ncRNA metabolic process 1.03E-61 611

G6 intracell. non-membrane-bounded organelle; structural molecule activity 5.33E-76 293

G7 cytosolic part; ribosomal subunit 1.61E-88 460

G8 membrane-enclosed lumen; nuclear lumen; intracell. organelle lumen 1.17E-47 263

G9 mitochondrion organization; mitochondrial part; cytoplasmic part; protein complex biogenesis 2.06E-26 592

G10 cellular response to oxidative stress; generation of precursor metabolites and energy 2.37E-4 296

G11 binding; nuclear part; preribosome 2.87E-11 508

G12 cellular process involved in reproduction 0.001 435

G13 macromolecular complex; cell part; structural molecule activity 6.05E-29 1442

G14 vacuolar transport; chromosome 5.09E-7 606

G15 regulation of cellular (macromolecule) biosynthetic process; protein modification process 2.28E-13 1019

G16 organic substance catabolic process; carbohydrate metabolic process; cytoplasm 1.02E-15 648

G17 ribonucleoprotein complex biogenesis (general) 1.08E-94 784
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Table 6 Illustrative set of biclusters with different properties and heightened biological relevance (p-values after
Bonferroni correction)

Dataset ID Pattern Items Closing options

B1 FAABFFF A-F Merging with tight overlapping

dlblc B2 AAABCA A-C Extensions allowed (with tight merging)

B3 AAA/../EEE A-E Reducing with high homogeneity

B4 EEECEE A-E Merging allowed

hughes B5 CCDCBCBCC A-E Merging with relaxed overlapping

B6 AAAAA/../G..G A-G Merging with tight overlapping

gasch
B7 AAAGGGA A-G Merging with tight overlapping

B8 AAABACCCAA A-E Merging allowed

ID Type �Genes �Conds �p−values<0.01 �p−values [0.01,0.05] Best p-value

B1 constant 83 7 41 21 1.97E-10

B2 constant 153 8 9 1 2.27E-12

B3 multiplicative 119 5 5 18 4.12E-8

B4 constant 581 6 12 7 1.31E-25

B5 constant 654 10 16 4 1.31E-17

B6 additive 476 6 12 10 1.92E-6

B7 multiplicative 483 7 57 10 1.24E-81

B8 additive 521 10 17 5 4.57E-12

could hardly be discovered by peer biclustering meth-
ods, since many of them include conditions with multiple
degrees of expression (B1, B2 and B5) and non-constant
profiles (B8). All of these biclusters have heightened bio-
logical significance as observed by the number of highly
enriched terms after Bonferroni correction. Interestingly,
we also observe that different closing options lead to
biclusters with different shapes, even when the number of
items is the same (B4 and B5).
Although a detailed biological analysis is out of the

scope of this paper, we provide a brief analysis for one
bicluster per dataset. The bicluster identified in Tables 6
and 7 as B1, with 83 human genes with coherent expres-
sion across 7 samples, was discovered in dlblc using 6
levels of expression (under a Gaussian discretization).
These genes showed very low expression (A) on 2 samples,
low expression (B) on 1 sample and very high expres-
sion (F) on 4 samples. Over 40 GO terms were highly
significant, with the top set of terms being related with

immune defense responses (e.g. immune system process,
regulation of immune system process) and signaling func-
tions associated to immunomodulating agents, such as
cytokine. Significant terms related with Golgi and with
the formation of membrane-bound compartments imply
their critical roles during the induction of innate immune
responses after chemotherapy [81]. Similar biclusters are
not discovered when the number of expression levels is
decreased or when noise relaxations are not included, thus
motivating the need for BicPAM. The illustrative biclus-
ters, found in hughes and gasch datasets, concern genes
from Saccharomyces cerevisiae analyzed in the context
of studying nucleosome occupancy and responses to dif-
ferent stress conditions, respectively. The enriched terms
of bicluster B4 are associated with the formation of car-
boxylic acid and organonitrogen compounds, with opti-
mum enrichment levels found in the presence of moderate
noise-tolerance. Bicluster B7 captures genes with coher-
ent expression across multiple time points from three

Table 7 Enriched GO terms of three illustrative BicPAM biclusters

ID Dataset Top 4 GO Terms (p-value)

B1 dlblc
Immune response (2.32E-10); immune system process, defense response (<1E-6);

cytokine-mediated signaling pathway (1.33E-7); Golgi apparatus (1.19E-7).

B4 hughes
Carboxylic acid biosynthetic process (1.3E-25) and metabolic process (6.12E-16);

organonitrogen compound biosynthetic process (2.23E-18) and metabolic process (2.71E-13).

B7 gasch
Ribonucleoprotein biogenesis and assembly (1.24E-81); cytosolic part (1.22E-57);

intracell. non-membrane-bounded organelle (1.31E-65); ncRNA metabolic process (1.82E-52).
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different heat shocks (shocks from 17, 21 and 25°C). The
analysis of GO terms shows functions related with the
ribonucleoprotein complex (p-value 1.24E-81), associated
with the reassembly and protection of small particles dur-
ing heat stress responses [82]. Interestingly, other biclus-
ters found in gasch are able to capture coherent levels of
expression across different stimuli. An example is biclus-
ter B8 that integrates conditions related with nitrogen
depletion, heat stress and diauxic shift. B8 has 521 genes,
coherent additive levels of expression across 10 condi-
tions, and over 10 highly significant enriched terms.

Transcriptional regulation
To complement the results on functional enrichment, we
analyzed the highly enriched transcription factors (TFs)
using the TFCONES database [83] (human genome) and
Yeastract database [84] (yeast genome) using a corrected
hyper-geometric statistical test.
Consider the illustrative biclusters provided in Table 7.

Some of the enriched transcription factors regulating
the genes in bicluster B1 (associated with immune sys-
tem responses in the human genome) include: HCLS1
gene that plays a key role in regulating clonal expan-
sion and deletion in lymphoid cells [85], IRF1 protein
that acts as a tumor suppressor and plays a role not only
in antagonism of tumor cell growth but also in stimu-
lating an immune response against tumor cells [85], and
TRIM22 antiviral protein involved in cell innate immunity
[83]. Other highly enriched TFs that regulate proliferation
and transformation (tumor supressors) are ANP32A and
RUNX3 [85]. The TFs regulating the genes in bicluster
B4 have p-values below 1E-15 after correction, each reg-
ulating from 50% to 95% of the genes in bicluster. They
are associated with regulatory functions consistent with
the enriched terms. Some of these TFs include histidine
biosyntehsis (Bas1p), amino acid biosynthesis (Gcn4p),
cyclic AMP receptor protein regulation (Sok2p) and other
TFs related with the regulation of carboxylic acid and
organonitrogen compounds [86]. Consider now bicluster
B7 from gasch. Some of the enriched TFs include Sfp1p,
Mga2p, Ace2p, Tup1p, Spt10p and Swi5p (p-values below
1E-15), each regulating 55%-97% of B7’s genes. These fac-
tors are known to be involved in stress responses as they
regulate cooling and oxygen levels (Mga2p), repair cellular
damage (Sfp1p and Spt10p), remodel chromatin (Tup1p)
and regulate cell wall protection (Swi5p and Ace2p)
[86-88]. Finally, consider bicluster B8, whose genes coher-
ently regulate heat, nitrogen depletion and diauxic shifts.
Sfp1p, Bas1p, Ste12p and Tec1p were the most significant
TFs in this bicluster (p-values<1E-7). Sfp1p controls
expression of ribosome biogenesis genes in response to
stress and DNA-damage response [86]. Bas1p regulates
gene expression for biosynthesis pathways such as path-
ways related with histidine metabolism, which responds

to environmental stimuli (e.g. nitrogen) affecting pH
calibration [86]. Finally, Ste12p and Tec1p act together
to regulate genes related with invasive growth, whose
production is expected under such stress conditions [86].
An extended analysis of the TFs associated with Bic-

PAM’s biclusters for the human and yeast genome is pro-
vided in Table 8. In this analysis we retrieved the TFs that
are more representative – high coverage of the genes in
the biclusters – and significant – high functional enrich-
ment (p-value<1E-3) – for each one of the twenty five
distinct biclusters disclosed in Table 5 associated with the
dlblc and gasch dataset. In line with the goal of the these
experiments [76,78], we observe that the identified TFs
are either directly or indirectly related with the responses
to chemotherapy (human) [83,85] and stress conditions
(yeast) [84,86]. This analysis thus further supports the
domain-relevance and adequacy of BicPAM.
Consider the enriched TFs provided in Table 8 for

a sample set with 8 distinct biclusters found by Bic-
PAM in the dlblc dataset. Different groups of TFs were
identified, each associated with a specific chemother-
apy outcome. Some of the TFs acting as putative tumor
suppressors include: ANP32A, LZTS1 (protein-coding
silenced in rapidly metastasizing and metastatic tumor
cells), RUNX3 (protein that binds to the core site of
leukemia virus, also frequently silenced in cancer), HCLS1
(antigen receptor signaling deletion in lymphoid cells),
IRF1 (protein that stimulates immune responses and reg-
ulates tumor cell differentiation), HIf1A (gene responsible
for tumor angiogenesis and pathophysiology of ischemic
disease), HDAC1 (complex interacting with retinoblas-
toma tumor-suppressor proteins), TCF3 (protein regu-
lating lymphopoiesis as its deletion is associated with
lymphoblastic and acute leukima malignancies) [83,85].
Other TFs dedicated to regulate cell proliferation include
the STAT families, CREG1, MEF2B, ARID5B, and BCL3
[85]. Understandably, we also observed the B-cell lym-
phoma protein (BCL6 and its paralog coding gene BCL6B)
and other leukemia-related disease genes involved in lym-
phoma pathogenes, such as BCL11A [83]. Complemen-
tarily, immune responses are associated with TRIM22
antiviral proteins, CEBPB, NFATC2 complex, and GTF2I
for activating immunoglobulin heavy-chain transcription
upon B-lymphocyte activation [85].
Finally, consider the enriched TFs provided in Table 8

for a sample set with 17 distinct biclusters found by
BicPAM in the gasch dataset. Since a large number of
enriched TFs was identified, Table 8 only provides an illus-
trative set containing TFs regulating over 50% of the genes
associated with each bicluster. Although the enriched TFs
regulate very distinct processes (see Table 5), most TFs are
activated in stress conditions, namely: Yap1p, Cin5p and
Hap2p during oxidative stress [86]; Gcn4p, Msn2p and
Msn4p during amino acid starvation [86]; Hsf1p during
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Table 8 Analysis of TFs of the putative regulatory modules given by the BicPAM’s biclusters provided in Table 5 for the
human genome (dlblc dataset) and the yeast genome (gasch dataset)

Dataset Bic.ID (Table 5) Highly enriched TFs

dlblc

Dl1 BCL11A, LZTS1, GTF2I, HCLS1, HDAC1, MBD4, MEF2B, NCOA3, STAT6

Dl2 ANP32A, HCLS1, IRF1, MNDA, NCOA1, RUNX3, STAT1, TRIM22, TRIP10

Dl3 BCL3, TRIM22, ANP32A, ARID5B, CEBPB, CREG1, IRF1, PFDN5, STAT1

Dl4 ANP32A, IRF1, NCOA1, STAT1, TRIM22

Dl5 CREG1, IRF1, TRIM22, ANP32A, STAT1

Dl6 ANP32A, IRF1, NCOA1, STAT1, TRIM22

Dl7 BCL6, BCL6B, HIf1A, ILF2, POU2AF1, SERTAD1, TCF3

Dl8 DR1, DRAP1, HIf1A, ILF2, NCOA3, SERTAD1, TMF1, ZNFN1A1

gasch

G1 Gcn4p, Sfp1p, Ace2p, Tec1p, Ste12p, Ash1p

G2 Sfp1p, Msn2p, Bas1p, Tec1p, Sok2p, Abf1p, Ash1p, Cst6p

G3 Sfp1p, Tec1p, Ste12p, Msn2p, Bas1p, Sok2p, Msn4p, Gcn4p

G4 Snf6p, Tec1p, Ste12p, Rap1p, Sin4p, Abf1p, Snf2p, Ash1p

G5 Sfp1p, Ace2p, Cst6p, Tup1p, Msn2p, Spt10p, Spt20p

G6 Hsf1p, Spt23p, Mga2p, Sfp1p, Spt10p, Msn2p, Gcr1p, Gcn4p

G7 Sfp1p, Swi5p, Tup1p, Spt10p, Spt20p, Gcr1p, Sin3p, Mga2p

G8 Sfp1p, Swi5p, Cst6p, Tup1p, Spt20p, Ash1p, Spt10p

G9 Yap1p, Ace2p, Sfp1p, Msn2p, Ash1p, Msn4p, Abf1p

G10 Sfp1p, Msn2p, Msn4p, Cst6p, Abf1p, Sok2p, Bas1p

G11 Snf6p, Tup1p, Snf2p, Cst6p, Sin4p, Rap1p, Swi3p, Hap2p

G12 Yap1p, Tec1p, Msn2p, Msn4p, Ste12p, Sok2p

G13 Snf6p, Tup1p, Abf1p, Snf2p, Cst6p, Sin4p

G14 Sfp1p, Tec1p, Ste12p, Bas1p, Sok2p, Yrm1p

G15 Ace2p, Sfp1p, Tec1p, Ste12p, Ash1p, Bas1p, Gcn4p, Sok2p

G16 Cin5p, Gcn4p, Msn4p, Sfp1p, Msn2p, Tec1p, Ste12p, Sok2p

G17 Sfp1p, Ace2p, Cst6p, Snf6p, Rap1p, Tup1p, Spt10p, Swi5p

variable heat shock elements including hyperthermia [86];
Sfp1p during DNA damage [84]; and Spt23p and Mga2p
during cooling [87]. The stress conditions are associated
with invasive growth (regulated by Tec1p, Ste12p, Ash1p
and Sok2p), and with the need for chromatin remodel-
ing (regulated by Snf6p, Snf2p, Spt20p, Tup1p and Swi3p)
and DNA repair (regulated for instance by Abf1p and
Spt10p) [84,86].

Coherence
Figure 25 illustrates four biclusters discovered in the gasch
dataset, which are related with the response of Yeast genes
to heat shock at different time points. BicPAM’s behavior
is particularly favorable to the discovery of these biclus-
ters, contrasting with other biclustering approaches. In
particular, the combination of constant models with sym-
metries, multiplicative models with symmetries, additive
models with several levels of expression, and additive
models with symmetries. The analysis of these biclus-
ters shows the relevance of combining multiple levels of

expression (|L| ≥ 5) with noise relaxations for the dis-
covery of meaningful biclusters. Additionally, this analysis
supports the importance of allowing sign-changes across
multiple levels of expression to capture activation and
repression mechanisms in regulatory processes.

Comparison of pattern-based biclustering approaches
In the previous sections, we provided substantial
empirical evidence for the improvements of BicPAM
performance in comparison with peer pattern-based
methods such as BiModule, DeBi and RAP. First,
Figures 10 and 11 show the unique ability of BicPAM to
discover non-constant biclusters (>50 percentage points
in MS and FC against BiModule, DeBi and RAP). Second,
Figure 12 shows improvements in the discovery of con-
stant biclusters related with BicPAM’s ability to deal with
the items-boundary problem and to adequately postpro-
cess biclustering solutions. Additionally, BicPAM’s ability
to combine solutions discovered under multiple levels
of expression and to discover all the maximal biclusters
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Figure 25 Biclusters extracted from gasch dataset with constant models (a), multiplicative models (b) and additive models in the absence
and presence of symmetries (c and d).

(closed pattern representations) surpasses specific draw-
backs found in some of the existing methods. Third, the
incorporation of scalability principles and of minimalist
FP-trees (Figure 20) guarantee its competitive computa-
tional complexity even when procedures to handle noise
and adapt the biclustering structures are used. Fourth,
Figures 22 to 24 show significant performance improve-
ments of BicPAM due to its exclusive ability to deal
with medium-to-high levels of missing values and noise.
Finally, the biological relevance of BicPAM’s solutions
against the solutions provided by the peer methods is
assessed in Table 4 and further supported in subsequent
analyzes. In particular, we show that BicPAM’s solutions
cover the (enriched) biological processes associated with
peer pattern-based solutions (Table 6). Moreover, they
enable the discovery of unique and biologically meaning-
ful biclusters (Tables 5 and 6) such as the four illustrative
biclusters in Figure 25.

Conclusion
A new approach for flexible and robust pattern-based
biclustering (BicPAM) is proposed with the goal of
performing exhaustive searches to discover biclustering

solutions with multiple coherencies under relaxed condi-
tions (arbitrary number and structure of biclusters) with
heightened efficiency. BicPAM is the result of integrating
existing dispersed contributions on pattern-based biclus-
tering with new critical methods to deal withmore flexible
expression profiles and to handle varying levels of missing
values and noise.
BicPAM goes beyond the constant assumption made

by existing pattern-based approaches, and extends the
biclustering task to new types of biclusters, includ-
ing additive and multiplicative assumptions that can
accommodate symmetries. It is the first attempt to model
these coherencies under a pattern-based approach. This is
critical since pattern-based searches are exhaustive, sup-
port flexible structures of biclusters, and consider multi-
ple levels of expression (instead of differential expression).
Additionally, BicPAM is able to surpass the common

drawbacks related with discretization procedures, since it
is able to assign multiple items over a single element to
tackle the items-boundary problem. In this way, the trans-
actional database derived from the input matrix can have
more items than the number of elements in the original
matrix.
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BicPAM relies on dynamic parameterizations for a
tuned performance across different settings, including
pattern representations, strategies to handle missing val-
ues, and postprocessing options for the post-handling of
noise and composition of flexible structures. Although
the default options are dynamically derived based on the
properties of the target dataset, they can also be defined
by the user without the need to adapt the core mining
task.
Results on both synthetic and real datasets show Bic-

PAM’s ability to find optimal solutions over matrices with
more than 10.000 rows and up to 400 columns. The assess-
ment of BicPAM’s performance against peer pattern-
based approaches and other state-of-the-art biclustering
algorithms supports its heightened flexibility and robust-
ness to noise. Additionally, we observed that the majority
of the biclusters discovered by BicPAM in gene expres-
sion datasets are functionally relevant and could not be
discovered by other biclustering approaches. The analysis
of their transcriptional regulation showed significant and
meaningful associations.

Software availability
The datasets and BicPAM executables are available in
http://web.ist.utl.pt/rmch/software/bicpam/.

Endnote
aClustering metrics measure the ability to correctly

group rows (or columns), that is, of attaining high
intra-cluster similarity and low inter-cluster similarity.
Entropy and F-measure metrics are the common choice
[56,57]. F-measure can be further decomposed in terms
of recall (coverage of found rows by a hidden cluster) and
precision (absence of rows present in other hidden
clusters).
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