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Abstract

The universal pacemaker (UPM) model extends the classical molecular clock (MC) model, by allowing each gene, in
addition to its individual intrinsic rate as in the MC, to accelerate or decelerate according to the universal pacemaker.
Under UPM, the relative evolutionary rates of all genes remain nearly constant whereas the absolute rates can change
arbitrarily. It was shown on several taxa groups spanning the entire tree of life that the UPMmodel describes the
evolutionary process better than the MC model. In this work we provide a natural generalization to the UPMmodel
that we denote multiple pacemakers (MPM). Under the MPMmodel every gene is still affected by a single pacemaker,
however the number of pacemakers is not confined to one. Such a model induces a partition over the gene set where
all the genes in one part are affected by the same pacemaker and task is to identify the pacemaker partition, or in
other words, finding for each gene its associated pacemaker. We devise a novel heuristic procedure, relying on
statistical and geometrical tools, to solve the problem and demonstrate by simulation that this approach can cope
satisfactorily with considerable noise and realistic problem sizes. We applied this procedure to a set of over 2000
genes in 100 prokaryotes and demonstrated the significant existence of two pacemakers.
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Background
The Universal PaceMaker (UPM) of genome evolution [1]
extends the classical Molecular Clock (MC) model [2] and
its various imperative relaxations (see e.g. [3,4] among a
few), by relaxing the rate constancy (as in MC) on one
hand, and yet preserving the rate correlation between the
various genes. Such a model can provide explanation to
the striking phenomenon that the distribution of the evo-
lutionary distances between orthologous genes remains
remarkably constant across the entire history of life
[5-7]. Under the UPM, all genes in each evolutionary lin-
eage adhere to the pace of a pacemaker (PM), and change
their evolutionary rate (approximately) in unison although
the pacemaker’s pace at different lineages may differ. The
UPM model is compatible with the large amount of data
on fast-evolving and slow-evolving organismal lineages,
primarily different groups of mammals [8]. Alternatively,
the constancy of gene-specific relative rates is also an out-
come of the MC model, under which the different genes
evolve at roughly constant albeit different (gene-specific)
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rates. In a line of works [1,9,10] we established the superi-
ority of the UPMmodel over theMC by explaining a larger
fraction of the variance in the branch lengths of thousands
of gene trees spanning the entire tree of life. Despite its
relative simplicity, it was noted [11] that the UPM is “the
most plausible model of genomic evolution and appears to
have some statistical support”.
Although highly statistically significant, in absolute

terms however, the advantage of UPM overMCwas small,
and both models exhibited considerable evolution rate
overdispersion. A plausible explanation to the latter is
that instead of a single, apparently weak (overdispersed)
PM, there are independentmultiple pacemakers that each
affect a (different) subset of genes and are less dispersed
than the single pacemaker. Throughout, we use the nota-
tion UPM to refer to the model and the PM term for the
pacemaker as an object.
Primarily, we investigate the requirements for the iden-

tification of distinct PMs and assignment of each gene to
the appropriate PM. Such an assignment forms a parti-
tion over the set of genes and hence we denote this task
as the PM partition identification (PMPI) problem. PM
identification depends on the number of analyzed genes,
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the number of target PMs, the intrinsic variability of the
evolutionary rate for each gene and the intrinsic vari-
ability of each PM. The PMPI problem is theoretically
and practically hard as it concerns dealing with a lot of
data obscured by a massive amount of noise. A possi-
ble direction to pursue is to exploit the signal from the
data themselves in order to reduce the search space and
focus only on relevant partitions. We note that partition-
ing over the gene set or even different positions in a gene,
has been done before [12-14]. However, to the best of our
knowledge, these were not based on a rigorous model as
the pacemaker rather mainly on the level of the mutation
rates.
In this work, a first attempt in this direction is made by

devising and employing a novel technique using a series
of analytic tools to solve the PMPI problem, and assess
the quality of the derived solution. We tackle theoretical
computational and statistical issues, as well as challeng-
ing engineering obstacles that arise along the way. These
include guarantying homoschedasticity [15] by working
in the log space, removing gene order dependency [16]
by employing the Deming regression [17,18], and graph
completion through most reliable paths. The result is the
partial gene correlation graph where edge lengths repre-
sent (inversely) correlation, that we subsequently embed
into the Euclidean space while preserving the distances
(see Figure 1). We apply standard clustering tools to this
data and assess the significance of the result. We next for-
mulate the PMPI problem as a recoloring problem [19,20]
where a gene’s PM is perceived as its color and the (set
of ) genes associated with a certain PM form a color class.
To measure the quality of partition reconstruction, one
may look for the minimum number of genes that need to
be recolored in order that every part in the reconstructed
partition is monochromatic. This number (the recolored
genes) is denoted the partition distance [21] and can be

Figure 1 A graphical illustration of the embedding of the data in
Euclidean space. Red big circles represent pacemakers and the small
circles around them - their associated genes.

solved by a matching algorithm. We however use a greedy
maximum weighted matching algorithm, that is practi-
cally simpler for implementation and provided very good
results empirically. Although theoretically this algorithm
provides a 1/2-approximation guarantee for any input,
under some statistical conditions the we note, with high
probability the correct partition distance is returned.
The simulation results obtained using this approach are

highly significant under a random model that we devise.
The latter is significant as it implies that we were suc-
cessful in both extracting the signal from the (noisy)
data, and our technique is plausible. Finally, using insights
from the simulation analysis, we analyzed the large set
of phylogenetic trees of prokaryotic genes that was pre-
viously studied in [1]. Because the actual PM partition is
unknown, we used the gap statistics criterion of Tibshirani
et al. [22] to determine clustering significance and result-
ing in identification of two distinct genome evolution
PMs.
We end this part with a visual illustration given by a

graphical representation in Figure 1 where the big red balls
represent PMs and the small circles represent genes. By
the illustration, it is clear that the more genes and PMs the
more likely they are to mix between each other. Similarly,
the larger the distance between a gene and its PM, the
greater the probability to misclassify it. Conversely with
respect to the distance between PMs - the greater this
distance, the less likely gene to be misclassified.

The evolutionarymodel
Evolutionary history is described by a tree T = (V ,E)

which is a combinatorial object composed of nodes repre-
senting (extant and extinct) species, and edges connecting
these nodes such that there are no cycles in T . The edges
are directed from an ancestor to its descendant nodes and
also correspond to the time period between the respec-
tive nodes. There is one node with no ingoing edges, the
root, and nodes with no outgoing edges are the leaves
that are labeled by the species (or taxa) set. Therefore, the
topology of T indicates the history of speciation events
that led to the extant species at the leaves of T . Internal
nodes correspond to ancestral forms existed at speciation
events, and edges indicate ancestral relationships. A node
(or a species) is a set of genes G = {gi} where a gene is
a sequence of nucleotides of some given length. A gene
evolves through a process in which mutations change its
nucleotides from one state to another. In our model, all
extant and extinct species possess the same set of genes
G = {gi} and all genes gi evolve along T according to an
evolutionary model that is assumed to follow a continu-
ous time Markov process. This process is represented by
a given rate of mutations r per unit of time. In particu-
lar, every gene gi evolves at an intrinsic rate ri ∈ r that is
constant along time but deviates randomly along the time
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periods (i.e. tree edges). Let ri,j be the actual (or observed)
rate of gene i at period j. Then ri,j = rieαi,j where 0 < eαi,j
is a multiplicative error factor. The number of mutations
in gene gi along period tj is hence �i,j = ri,jtj, com-
monly denoted as the branch length of gene gi at period j.
Throughout, we will use i to identify genes gi and j for time
periods tj. As the topology of T is constant and assumed
to be known, we will not make any reference to the tree
and regard the edges only as independent time periods tj
for 1 ≤ j ≤ τ where τ = |E|.
We now extend this model to include a pacemaker that

accelerates or decelerates a gene gi, relative to its intrinsic
rate ri. Formally, a pacemaker PMk is a set of τ paces βk,j,
1 ≤ j ≤ τ where βk,j is the relative pace of PM k during
time period tj and −∞ < β < ∞. Under the UPMmodel,
a gene gi that is associated with PM Pk has actual rate at
time tj: ri,j = rieαi,j eβk,j . Hence, for β < 0 the PM slows
down its associated genes, for β > 0 genes are accelerated
by their PM, and for β = 0, the PM is neutral. Assume
every gene is associated with some PM and let PM(gi) be
the PM of gene gi. Then the latter defines a partition over
the set of genes G, where genes gi and gi′ are in the same
part if PM(gi) = PM(gi′).

Comment 1. It is important to note that gene rates, as
well as pace makers paces, are hidden and that we only see
for each gene gi, its set of edge lengths �i,j.

Comment 2. The presence of two genes in the same part
(PM) does not imply anything about their magnitude of
rates, rather on their unison of rate divergence.

The above gives rise to the PM Partition identification
Problem:

Problem 1. Pacemaker Partition Identification. Given a
set of n genes gi, each with τ branch lengths {�i,j}, the Pace-
maker Partition Identification (PMPI) problem is to find
for each gene gi, its pace maker PM(gi).

We first observe the following:

Observation 1. Assume gene gi has error factor αi,j = 0
for all time periods tj, 1 ≤ j ≤ τ and let P′ = PM(gi) be
the pace maker of gene gi with relative paces eβj . Then at
all periods tj, ri,j = rieβj .

Observation 1 implies that if genes gi and gi′ belong to
the same pace maker, and both genes have zero error fac-
tor at all periods, then at all periods, the ratio between the
edge lengths at each period is constant and equals to ri/ri′ .
This however is not necessarily true if one of the error fac-
tor is not zero or genes gi and gi′ do not belong to the same

pace maker. Recall that we do not see the gene intrinsic
rates (and hence also the ratio between them). However
if we see the same ratio between edge lengths across all
time periods, we can conclude about the error factors and
possibly their belonging to the same PM.
In order to tackle the PM identification problem, we

impose some statistical structure (as observed in real
data [6]) on the given setting. The goal is to assume that
the error factor of each gene is small enough at every
period, so that all genes belonging to the same PM, change
their actual rate in unison.
Similarly, we assume that βk varies so that genes from

different PMs (parts) can be distinguished (otherwise, no
difference except their random error factor exists).

Assumption 1.

1. For all genes gi and periods tj, the gene error factors
αi,j follow a normal distribution αi,j ∼ N

(
0, σ 2

G
)
,

2. For all PMs Pk and periods tj, the PM paces βk,j
follow a normal distribution βk,j ∼ N

(
0, σ 2

P
)
,

The pacemaker partition identification procedure
Here we devise a procedure to solve the PMPI problem
that entails a technique to infer distances between genes,
constructing the gene correlation graph, embed reliably
this graph in the plain and apply partitioning algorithms
to this embedding. We now describe each of these steps.

Inferring gene distance
As outlined above, our first task is to infer gene pairwise
distances from the raw data, which is gene edge lengths �i,j
for every time period (edge) j. In particular, as the relevant
information is encompassed in the random component of
that value, the task of extracting that component is even
more challenging.
We now proceed as follows: Given two sets of edge

lengths �i,j and �i′,j corresponding to genes gi and gi′ , and
time periods tj for 1 ≤ j ≤ τ , we draw τ points on a plain(
�i,j, �i′,j

)
. Now, if the error factors, αi,j = αi′,j = 0 for all

1 ≤ j ≤ τ and we connected all these points, we would
obtain a straight line. The slope of that line is the multi-
plicative factor representing the ratio between the rates of
evolution of the corresponding genes - rgi/rgi′ ; we denote
it ρi,i′ . Obviously, the above description refers to an ideal-
ized case. With real data, we never expect to find such a
perfect correlation because the characteristic variance σ 2

G
is always non zero. Thus, we expect to find the points scat-
tered around a trend line representing the rate ratio. The
density of points around the trend line represents the level
of correlation. Our goal is to obtain both the rate ratio ρi,i′
and the level of correlation where the latter will be used
to classify between the genes. The method of choice to
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pursue here is to apply linear regression [15] between the
points representing the two edge lengths. There are sev-
eral outstanding issues that need to be addressed in such
a task.

1. Zero intercept requirement: Linear regression,
when applied to a set of points on a plane, finds a line
y = ax + bminimizing the sum of square distances
of that line to all the points. As we deal with a
multiplicative factor, the trend line has to cross the
origin, i.e. b = 0. Hence we need to modify the
standard procedure for regression.

2. Homoschedasticity requirement:
homoschedasticity is the property that the error in
the dependent variable (y) is identically and
independently distributed (IID) along the trend line.
However, by our formulation �i,j = tjri,j = tjrieαi,j
and the expected value (the value on the trend line) is
tjri. The deviation then is tjri (eαi,j − 1). As ri is
constant for all time period, we see that the longer
the time period tj, the larger the influence of αi,j. That
is, assume two time periods j and j′ with the same
error factor αi,j = αi,j′ but different period lengths,
WLOG �j < �j′ . We obtain different deviations
tjri(eαi,j − 1) < tj′ri

(
eαi,j′ − 1

)
, creating a bias toward

longer periods. The following observation follows
immediately from the definition of αi,j.

Observation 2. If we take the log �i′,j = log tjri′ +αi′,j
we arrive at Homoschedasticity.

We denote this as the log transformation and also
observe the following:

Observation 3. Under the log transformation the
trend line log �i′,j = a log �i,j + b has slope one
(a = 1) and intercept b = log ρi,i′ .

We will use these properties in our calculations.
3. Gene order independence: The final problem with

the linear regression has to do with the basic
assumptions in least squares analysis. In standard
least squares, the assumption is that the independent
variable x is error-free while only the dependent
variable y deviates from its expected values. In our
case, however, the choice between the variables is
arbitrary and both are subjected to deviation,
according to their characteristic variance σ 2

G.
Handling this case with standard least squares would
cause arbitrary bias due to the selection of the
variables [16]. To handle this case, we apply Deming
Regression [17,18]. This approach assumes an
explicit probabilistic model for the variables and
extracts closed forms expressions (in the observed

variables) for the sought expected values. To adjust
to our specific case, we will use the observations
drawn above. The linear model assumed is of type
η = αξ + β where the observations of both η and ξ ,
(x1, . . . , xn) and (y1, . . . , yn), respectively, have
normally distributed errors: (i) xi = ξi + εxi , and
(ii) yi = ηi + εyi = α + βξi + εyi .
As can be seen, this is exactly our case. The
likelihood function of this model is:

f = �n
1
(
2πσ 2)−1/2 exp

(
− (xi − ξi)2

2σ 2

)

× (
2πσ 2)−1/2 exp

(
− (yi − α − βξi)2

2σ 2

) (1)

Under the general formulation, the ML value for α is:
α = x̄ + ȳβ where x̄ and ȳ are the average values for xi
and yi. However, in our formulation we have β = 1 and
hence α = x̄ + ȳ. Having α at hand, we can reconstruct
the trend line and obtain the deviation of every point from
it. Finally, by our formulation, ρi,i′ is given by exp(α) and
the correlation between the rates is the standard sample
Pearson correlation coefficient r(X,Y ) [15]:

r =
∑

i=1
(
Xi − X̄

) (
Yi − Ȳ

)
√∑

i=1
(
Xi − X̄

)2√∑
i=1

(
Yi − Ȳ

)2 . (2)

The gene correlation graph
After we inferred all pair-wise correlations, we can build
the Gene Correlation Graph G = (V ,E,w) aiming at rep-
resenting the correlation between the pairs of genes. V ={
gi

}
and an edge

(
i, i′

) ∈ E if r
(
i, i′

)
from Equation (2)

is greater than some threshold δr , maintaining a minimal
level of correlation in the graph. Hence we set w

(
i, i′

) =
r
(
i, i′

)
and as −1 ≤ r ≤ 1 we are guaranteed no negative

weighted edges exist. Note that we are not interested in r2
which may reflect high negative correlation, rather only in
high positive correlation.
Recall that our initial goal was to partition genes into

clusters (PMs) according to correlation. Perhaps the most
commonly used technique is k-means [23,24] that aims
at minimizing the within-cluster sum of squares (WCSS).
These techniques operate in the Euclidean space and
hence some distance preserving technique is required
to embed the correlation graph G in the space. Multi-
dimensional Scaling [25] (also Euclidean embedding) is
a family of approaches for this task. Kruskal’s iterative
algorithm [26] for non-metric multidimensional scaling
(MDS) receives as input a (possibly partial) set of distances
and the desired embedding should preserve the order of
the original distances. It requires however a full matrix as
a starting guess.
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Our approach here is to join every two nodes by the
most reliable connection and with the highest correla-
tion. This translates to finding the path with the minimum
number of nodes (hops) and that the multiplication of the
corresponding weights is minimal. This distance measure,
min hop min weight (MHMW), is also useful in com-
munication networks, where hop distance corresponds to
reliability [27].
While the naive algorithm for the latter runs in time

O
(
n3

)
it can be easily seen that we can solve the problem

in time O
(
n2 log diam(G)

)
where diam(G) is the diame-

ter of G. The completed graph Ĝ serves as input to the
Classical multidimensional scaling (CMDS) [28] whose
output serves as the initial guess to the Kruskal’s non-
metric MDS. Once we have the embedding, we can apply
k-means and obtain the desired clustering.
Below is the complete formal procedure PMPI:
Procedure PMPI(G, δr):

1. Set the correlation graph G = (V ,E) with V = ∅,
E = ∅

2. V = {
g|g is a gene in G

}
3. for all gi, gj ∈ G

• apply the Deming regression between gi and gj
to determine r

(
gi, gj

)
• if r

(
gi, gj

) ≥ δr , then add
{(
gi, gj

)}
to E and set

w
(
gi, gj

) ← r
(
gi, gj

)
4. Ĝ ← MHMW (G)

5. apply Classical Multidimensional Scaling (cmdscale)
to the full graph Ĝ

6. apply Kruskal’s iterative algorithm (isoMDS) to the
original distance matrix, starting from cmdscale
output

7. apply kmeans to the resulted embedding

Simulation analysis
In order to evaluate the PMPI procedure described in
Section 1 and derive practical intuition over our model,
we performed simulation according to the basic lines
described above.
In a simulation study, a crucial part involves the assess-

ment of the reconstruction quality with respect to the
model on which the input was generated. As the PMPI is
targeted at reconstruction of the original PM partition, we
chose to use the partition distance measure.

Partition distance
Once we obtain the reconstructed clustering, it should be
compared to the original, model clustering. The task of
comparing two clusterings can be casted as a partition
distance where every clustering is a partition over the ele-
ment set. We now define it formally. For two sets si and

sj, the distance d(si, sj) is the size of their symmetric dif-
ference set si 
 sj = (si \ sj) ∪ (sj \ si). Analogously, the
similarity s(si, sj) is the size of their intersection set si ∩ sj
and it is easy to see that given the sizes of the two sets,
one is derived from the other. A partitionP over a ground
element set N is a set of parts {pi} where every part is a
subset of N ,

{
pi

}
are pairwise disjoint (i.e. pi ∩ pj = ∅

for every i = j), and their union is N . The cardinality of
P , denoted as |P| is the number of parts. A partition can
also be perceived as a coloring function C from N to a
set of colors C (the color classes) where C(x) is the part
of element x ∈ N under partition P (or equivalently C).
Henceforth we will use the notions of PM identity and
a color interchangeably. Given two partitions P and P ′
over the same element set N (or equivalently C and C′),
denoted as the source and target partitions, we are inter-
ested in their partition distance d

(
P ,P ′) as somemeasure

of similarity. The simplest approach is naturally the num-
ber of elements with different colors at the two partitions,
i.e., x ∈ N s.t. C(x) = C′(x), and we call it the iden-
tity similarity. Under this approach, the partition distance
between P and P ′, d

(
P ,P ′), is defined as:

d
(
P ,P ′) =

∑
x∈N

δ̄(C(x),C′(x)) (3)

where δ̂ is the inverse Kronecker delta:

δ̄(i, j) =
{
1 if i = j
0 otherwise. (4)

This of course is simple and is an upper bound on a
more accurate approach: colors can be permuted between
the two partitions, in the sense that a color is mapped by
a function f to another color in C and now d

(
P ,P ′) is

defined as

d
(
P ,P ′) =

∑
x∈N

δ̄
(
f (C(x)),C′(x)

)
. (5)

It is easy to see that under this definition, f in the first
approach is simply the identity function f (c) = c for every
c ∈ C. This essentially defines a recoloring problem [20]
where the goal is to recolor the least number of elements
in P ′ (or C′) such that f (C(x)) = C′(x) for every ele-
ment. Hence the cost of f is the number of elements x s.t.
f (C(x)) = C′(x).
Figure 2 illustrates the idea. In the left side, most of the

genes chose their original PM (color) and therefore the
identity similarity is the optimal mapping. However, in the
right side, most of the blue genes chose the green PM,
most of the red genes chose the blue PM, and most of the
green genes chose the red PM. Therefore this is also the
optimal mapping.
Now, since the mapping is from C to C, f is a bijec-

tion or simply a matching between the set of colors.
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Figure 2 Partition similarity under twomappings. (a) The identity
similarity is the optimal where we just count the number of recolored
vertices. (b) The optimal similarity is obtained by mapping the blue
color to red, the red to green, and green to blue, yielding partition
distance 3.

In [21] Gusfield noted that the partition distance prob-
lem can be casted as an assignment problem [29] and
hence be solved by a maximum flow in a bipartite graph
in time O(mn + n2 log n) [30]. Matching problems are
among the most classical and well investigated in the-
oretical, as well as in practical, computer science [31].
Although it has a polynomial time exact algorithms with
many flavors [30], a host of works on approximated solu-
tions were introduced. For its very simple implementation
and empirically accurate results that are based on the-
oretical properties we show below, we chose to use a
very simple greedy algorithm, named Greedy PartDist.
The algorithm works recursively and, at each recursion,
chooses the heaviest edge (u, v) in the graph, adds it to the
matching M and removes from the graph all other edges(
u, v′) and

(
u′, v

)
for u′, v′ ∈ V . The algorithm is given

below.

Greedy PartDist
(
P ,P ′):

• Construct the bipartite graph B
(
P ,P ′,E,w

)
with

w
(
p, p′) = s

(
p, p′) for every p ∈ P and p′ ∈ P ′ s.t.

s
(
p, p′) > 0

• sort E according to w by descending order and use
it as a stack to fetch elements.

• MG ← ∅
• while E is not empty

–
(
p0, p′

0
) ← pop(E)

– MG ← MG ∪ (
p0, p′

0
)

– Remove all
(
p0, pj

)
and

(
pi, p′

0
)
items from E

• match arbitrarily zero-degree elements from P
with zero-degree elements from P ′ and add toMG

• ReturnMG

Claim. The algorithm Greedy PartDist terminates in
time O(m log n).

Proof. The algorithm is comprised from the following
major tasks:

• building the graph B - Every part p′ ∈ P ′ holds the
number of elements it has from every p ∈ P , hence in
O(E) B is constructed.

• Sorting E - O(m logm) = O
(
m log n2

) = O(m log n)

by any standard sorting procedure.
• ConstructingMG - if we go downwardon E and

additionally holding an auxiliary link from a part to
all its edges, each element in E is accessed only once
and in constant time, O(m) in total.
The final stage consists of matching orphan parts
from both partitions. It can be easily perceived that
this can be done in time linear in n.

This algorithm provides a 1/2-approximation guaran-
tee [32]. In the Appendix we provide the same approxima-
tion guarantee (i.e. 1/2) by the generic recursive analysis
of the local ratio technique [33].

The greedy algorithm under the stochastic models
It is interesting to analyze the performance of the greedy
algorithm under our stochastic model. It is easy to see
(even simply for symmetry arguments) that under our
model assumption, every gene remains in its part with
probability α (that depends on the two variances σP and
σG) and with probability 1 − α chooses uniformly a par-
tition (including its own partition). The expected identity
similarity here is the sum over the elements maintaining
their part plus those randomly chose that same (original)
part.
We therefore obtain:

E[ sα−u
(
P ,P ′) ]= (k − 1)αn

k
+ n

k
(6)

Definition 1. We say that a PM P is correctly clustered if
most of the genes associated with P as a source PM, choose
P as their target PM.

Definition 1 is demonstrated visually in Figure 2(a)
where every color is preserved (in the right side) by most
of its vertices. Definition 1 implies that under a correctly
clustered PM, a significant core set of genes stay together
is the target PM (part). It is easy to see that, under our
stochastic model, if enough genes are associated with
every source PM, then all PMs are correctly clustered.

Claim. Assume every color is correctly clustered. Then
Algorithm Greedy PartDist returns the correct result.
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Proof. The proof follows by induction on the number
of PMs |P|. For a single PM, there is a single edge in the
bipartite graph and this edge is chosen. For |P| > 1, note
that by the assumption, the heaviest edge emanating from
each PM (node) inP to its corresponding color in the par-
tition P ′. In particular, this is true for the heaviest edge
in the bipartite graph, linking between the nodes corre-
sponding to some PM P. Then the algorithm chooses that
edge and remove all edges adjacent to it. Therefore, PM P
was correctly chosen and by the induction hypothesis the
algorithm returns the correct result.

Simulation results
To asses the effectiveness of our PM partitioning iden-
tification procedure PMPI, we conducted the following
simulation study. Number of genes n was held constant
n = 100 giving rise to

(100
2

) = 4950 pairs of correlation
tests. The number of edges per a gene tree was set to 25,
reflecting the average size of the agreement tree among
our real data trees. To simulate low agreement similarly to
our real data (low MAST value) we discarded every pair
with probability 2/3 maintaining approximately 1/3 of the
pairs (see more details in Section ‘Results on real data’).
Every PM Pk was associated with an intrinsic variance σ 2

P
that sets its relative pace to eβk,j where βk,j ∼ N

(
0, σ 2

P
)
.

Similarly, every gene sets its rate at period j to ri,j =
rieαi,j eβk,j where αi,j ∼ N

(
0, σ 2

G
)
(See Model Section 1 for

full details).
Every gene was associated with a source PM, same num-

ber of genes for each PM. Number of PMs k varied from 2
to 10 (i.e. 10 to 50 genes per PM). Distance between genes
was set as 1 − r from the regression line where the latter
was derived by the Deming regression.
This has defined our correlation graph described above.
In order to apply clustering algorithms on the elements,

the elements need to be embedded in some Euclidean
space. Multidimensional scaling takes a set of dissimilar-
ities (over a set of elements) and returns a set of points
in a Euclidean space, such that the distances between the
points are approximately equal to the dissimilarities. A
set of Euclidean distances on n points can be represented
exactly in at most n − 1 dimensions. The procedure cmd-
scale follows the analysis of Mardia [34], and returns the
best-fitting k-dimensional representation, where k may be
less than the argument k (and by definition smaller than
n). In our implementation, in order to avoid any distor-
tion, we set k to the maximum value as determined by
the data (and is found and returned by the method). We
used a version of cmdscale that is implemented in R. As
cmdscale requires a complete graph, we used the min-
hop-min-weight (MHMW) algorithm. The output of the
MHMW is a complete graph where the weight between
any two points is the lightest (min weight) path among all

min hop reliable paths (paths between trees for which cor-
relation was derived). At this point we can use cmdscale
to map this graph to the Euclidean space. Note however,
that this mapping corresponds not to the original graph,
rather to some approximation of it derived by the output
of the MHMW algorithm. This mapping however serves
as an initial guess to the iterative mapping of the original,
partial, distance matrix. This iterative process is done by
the function isoMDS implemented in R. Thismapping will
serve us for the clustering operation. Now, as opposed to
real data, here we know the original number of clusters,
we can just set this as the number of clusters required.
We used kmeans implemented by R to obtain the optimal
clustering.
Our results appear in Figure 3. Themeasured quantity is

(normalized) partition distance as measured by our greedy
PartDist. The independent variable is the ratio between
σG and σP . The larger σP the more dispersed are the
PMs and hence farther from one another. Equivalently,
the smaller σG, the more concentrated around their PM
are the genes. Therefore, we expect that the smaller the
ratio σG/σP is, i.e. PMs are spaced away from each other
while their associated genes are more concentrated, we
get better results in the sense that more genes remain in
their original cluster and successfully identified. Also, we
expect that the larger the number of PMs, the greater the
mixing between them with genes end up in PMs that are
neighboring to their original PMs. Indeed it can be seen
that for two and four PMs, for any ratio of σG/σP ≤ 1 a
very accurate reconstruction is achieved and so as to six
clusters, but for ratio a little less than 1. It is also shown
that for every number of PMs, at some critical σG/σP ratio
(that depends on #PMs) the reconstruction curve reaches
a saturation that tends to the random similarity as we
computed above.

Results on real data
Working with real data poses some other serious prob-
lems requiring solution. The first, is that we don’t have
here exactly τ periods with edge length �i,j for every gene
gi rather a set of trees with loose pairwise agreement.
This loose agreement is due to vast discordance between
the histories of the various genes as a result of phenom-
ena such as horizontal gene transfer (HGT) or incomplete
lineage sorting (ILS, see more details below). However,
discordance can arise even from the simple fact that some
gene is missing in some specific species, resulting in a con-
traction of internal nodes. Figure 4 illustrates HGT and
missing taxa cases. In both cases, the taxa set {1, 2, 4} is an
agreement subset for both gene-trees and in this case also
maximal agreement subset.
To cope with this problem, we employ the idea of Maxi-

mumAgreement Subtrees (MAST) [35], that seeks for the
largest subset of species under which the two trees are the
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Figure 3 Partition distance obtained by applying the PMPI technique on simulated data versus the gene/pacemaker variance ratio; the
plots are shown for 2, 4, 6 and 8 clusters (PMs).

same. Under MAST (or in general, any subset of the leaf
set), edges not connecting any species to the induced tree,
are removed, and internal nodes with degree two are con-
tracted, while maintaining the original length of the path.
Hence for every pair of genes (trees) we need to find the
MAST and compare lengths of corresponding edges.
Additionally, here as opposed to a simulation study, we

do not know the “real” partition and cannot compare the
resultant clustering to it. Therefore, another method for
assessing the results should be employed. Here we need
to compare the result to the probability of being obtained
under a randommodel. Recall that at the final stage of the
PMPI procedure we employ the kmeans algorithm which
seeks to minimize some error measure WK . This error
measure holds the sum of all pairwise distances between
members of the same cluster, across all clusters in the par-
tition. It is clear that the more clusters, the smaller WK
is. However, the decrease in WK is the largest near the

real value of the number of clusters k = K , and van-
ishes slowly for k > K . Therefore, a threshold for the
improvement (decrease) inWK must be defined as a stop-
ping condition, above which we don’t increase the number
of clusters k. The gap statistics analysis [22] compares the
improvement in WK under the real data, to that of a ran-
dom model. The gap (between the improvements) forms
an “elbow” at the optimal (real) K and this is the stopping
condition.
The real data we chose to analyze is the one used by

us [1] previously, of a set of gene trees that covers 2755
orthologous families from 100 prokaryotic genomes [36].
Prokaryotic evolution is characterized by the pervasive
phenomena of horizontal gene transfer (HGT) [37,38],
resulting in different topologies for almost any two gene
trees. To account for this we employed the MAST pro-
cedure for every gene pair and considered this pair
only if the MAST contained at least 10 leaves (species).

Figure 4 Cases in which agreement subtrees must be taken. (a) HGT case: An HGT event occurred in the blue gene, from the edge leading to 2
to the one leading to 3. While the red gene is unaffected, the blue gene has 2 and 3 as sister taxa. (b)Missing taxa case: Taxon 3 is missing the blue
gene. In both cases (a) and (b), a tree over taxa {1, 2, 4} has the same topology.
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Branch lengths of the original trees were used to compute
the branch lengths of the corresponding MAST compo-
nents (by computing path lengths). The variant of Dem-
ing regression in the log space as described in Section
‘Simulation analysis’ was performed on the logarithms of
the lengths of equivalent branches in both MAST com-
ponents. The standard sample Pearson correlation coef-
ficient was used as the measure of correlation between
the branch lengths. The graph of correlations between the
gene trees contained a giant connected component con-
taining 2755 genes and 1,250,972 edges, 33% of the max-
imum possible number (an edge in the graph exists only
when the MAST for the corresponding pair of trees con-
sists of at least 10 species). To cluster these genes accord-
ing to the correlation between their branch lengths, the
data were projected using isoMDS into a 30-dimensional
space based on the sparse matrix where 1 − r (correla-
tion coefficient) was used as a distance. We ran k-means
for k spanning the range from 2 to 30. The random model
we chose to consider is the fully random uniform model
(i.e., α = 0, no advantage to source PM) and we compared
the results to this model. Grouping these 2755 genes in
two clusters containing 1550 and 1205 members, respec-
tively, yields the optimal partitioning according to the gap
function statistics (Figure 5). We see the typical “elbow”
at the value of k = 2. The absolute results were 5,587,960
for the total graph weight, 2,686,914 and 2,285,921 weight
within each of the clusters, and 615,125 between them.
Analysis of the cluster membership reveals small albeit
significant differences in the representation of functional
categories of genes but no outstanding biologically rele-
vant trends were detected. Therefore, we can hypothesize

that if indeed the data gives rise to multiple PMs, this
signal is completely obscured by the amount of noise pro-
duced by the genes themselves (i.e. loose adherence to
the associated PM), and noise introduced by artificial fac-
tors such as MAST, multiple sequence alignment, and
phylogenetic reconstruction.

Conclusions
The universal pacemaker (UPM) model provides a more
general framework to analyze genome evolution than the
MC model as it makes no assumptions of the absolute
evolutionary rates of gene, only on the relative rates. This
provides a better explanation to the data observed at
extant species. However, similarly to the MC, the UPM
is extremely over-dispersed, with the noise complicating
detailed analysis. The difficulty in PM analysis is caused
both by the weak informative signal and by the large
volume of the data.
A natural expectation, however, is for different gene

groups, to adhere to different PMs, characterized by dif-
ferent functions. This classification imposes a partition
over the gene set where each gene is associated with its
own PM. The inference of such a partition is challeng-
ing twofold; first from information perspective, as it needs
to overcome a high level of “noise”, both biological, as
well as artificial. Next, the computational task of solv-
ing the PMPI problem requires investigating all possible
partitions over the gene set.
In this work we provide the first heuristic procedure for

detecting such a partitioning that is based on theoretical
ground. We use the Deming regression to infer correla-
tion between pairs of genes, and represent this correlation

Figure 5 The deltaGap function for 2755 analyzed genes, k from 1 to 10. According to Tibshirani et al. [22], the smallest k producing a
non-negative value of deltaGap[k] = Gap[k]-Gap[k+1]+sigma[k+1] indicates the optimal number of clusters.
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relationship in a graph. Subsequently, we embed this
graph in the Euclidean space and apply a clustering proce-
dure to it.
We also provide simulation and empirical results of the

application of this procedure. In the simulation study, we
have shown that the proposed procedure is sound and is
capable of detecting the original partition with high accu-
racy for a fairly small (up to 6) number of PMs as long as
the intrinsic gene rate variance is at the size of the PM vari-
ance. In the real data realm, we succeed in showing that
the analyzed genome-wide set of gene trees is optimally
partitioned between two PMs, and the improvement in
the statistical explanation is small albeit highly significant.
The partition of different functional gene groups between
the two PMs is also statistically significant (WRT random
partitioning of each group) however the biological inter-
pretation of this partitioning is challenging and remained
for future research.

Appendix
Performance guarantees for greedy PartDist algorithm
We now prove a performance guarantee on the output
matching returned by the Greedy PartDist algorithm. As
noted above, it was already shown [32] that the algorithm
provides a 1/2-approximation, however the approach
used here is different and of separate interest. The first
result applies to a general input and hence should be
compared to the optimal solution for such cases that is
obtained by solving the assignment problem.

A 1/2-approximationmaximumweight perfect matching via
local ratio
Our approximation algorithm makes use of the local ratio
technique, which is useful for approximating optimization
covering problems such as vertex cover, dominating set,
minimum spanning tree, feedback vertex set and more
[33,40,41]. We hereafter describe it briefly, in the con-
text of our setting: The input to the problem is a triplet(
B = (

P ,P ′,E
)
, f : 2E → {0, 1},w : E → R

+)
where B =(

P ,P ′,E
)
is a bipartite graph, f maps (edge subsets) to the

set of valid solutions and let � = {
E′ ⊆ E : f

(
E′) = 1

}
be

that set. The goal is to find a subset X ∈ � such that w(X)

is maximized, i.e. w(X) = OPT(V ,�,w) = max
Y∈�

w(Y ) (in
our context E is the set of edges, and� is the set of perfect
matchings in B). The local ratio principle is based on the
following observation (see e.g. [33]):

Observation 4. For a maximization problem π and
every two weight functions w1,w2:

OPTπ (E,�,w1)+OPTπ (E,�,w2) ≥ OPTπ (E,�,w1+w2)

Now, given our initial weight function w, we select
w1,w2 s.t. w1 +w2 = w and |support(w1) | < |support(w)|

where support(w) = {i : w(i) > 0} (i.e. w1 is rel-
evant to a smaller set). We first apply the algorithm to
find an r-approximation to (E,�,w1) (in particular, if
support(w1) = ∅, then every matching is an optimal
matching to (E,�,w1)). Let X1 be the solution returned
for (E,�,w1), and assume that w(X1) ≥ r ·OPT(E,�,w1).
If we could also guarantee that w(X2) ≥ r · OPT(E,�,w2)
then by Observation 4 we are guaranteed that X = X1∪X2
is also an r-approximation for (E,�,w1 + w2 = w). In
order to guarantee this we first need to care that the
solutions X1 and X2 comply. That is, the joint solution
composed by X1 and X2 is a valid solution (in the simple,
unweighted case, this is just a union of X1 and X2). We
therefore devise the following decomposition of w to w1
and w2:

Definition 2. For a weighted bipartite graph B =(
P ,P ′,E,w

)
let eM = (

pM, p′
M

) ∈ E be the maximal
weight edge. Then set

w2(e) =
{
w(e) if e=(

pM , pj
)
or e=(

pi, p′
M

)
for every pi∈Pand pj∈P ′

0 otherwise.

(7)

That is, w2 leaves the weight of all edges adjacent to
either pM or p′

M intact, and sets to zero all other edges in
support(w). We also let w1(e) ← w(e) − w2(e).
We now analyze the algorithm Greedy PartDist above.

We prove this by two observations.

Observation 5. Let w2 be as defined above. Then, at
every recursion, the algorithm Greedy PartDist provides a
1
2 -approximation to support(w2).

Proof. Since at most two edges from support(w2) are
present in an optimal matchingM∗, by taking the heaviest
edge eM = (pM, p′

M) the observation follows.

Observation 6. Let X be the matching returned by the
algorithm upon return from the recursion, i.e. X is amatch-
ing for B = (P ,P ′,E,w1) and assume X is at least a 1

2
approximation for support(w1). Then X ∪ eM = (pM, p′

M)

is a valid matching with weight at least w(M∗)/2.

Proof. The first part of the claim follows as the set
of edges are disjoint and cover all nodes in support(w).
The guarantee on the approximation follows by a simple
induction on the number of iterations. The basis is when
support(w) = ∅. The induction step follows easily using
Observation 5.
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