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Abstract

Sets of sequence data used in phylogenetic analysis are often plagued by both random noise and systematic biases.
Since the commonly used methods of phylogenetic reconstruction are designed to produce trees it is an important
task to evaluate these trees a posteriori. Preferably, however, one would like to assess the suitability of the input data
for phylogenetic analysis a priori and, if possible, obtain information on how to prune the data sets to improve the
quality of phylogenetic reconstruction without introducing unwarranted biases. In the last few years several different
approaches, algorithms, and software tools have been proposed for this purpose. Here we provide an overview of the
state of the art and briefly discuss the most pressing open problems.
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Introduction
Ideally, the evolutionary process generates data that con-
form to an additive tree structure. This ideal, however, is
rarely—if ever— reached in practice. A diversity of natural
processes conspire with imperfect models and methods
of data analysis to cause sometimes large deviations. An
unavoidable confounding factor is noise, introduced by
the stochastic nature of sequence evolution itself, leading
to a degradation of the phylogenetic signal when diver-
gence times become very large and when data sets are
small. Systematic biases are introduced by deviations from
tree-like evolution, such as recombination and lateral gene
transfer, as well as by violations of the model assump-
tions on which the data analysis is based, such as parallel
evolution.
Nearly all methods of molecular phylogenetics, fur-

thermore, use sequence alignments to obtain estimates
of the divergence between taxa. For the purpose of
phylogenetic reconstruction, each column of a multi-
ple sequence alignment (MSA) is a character. In other
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words, the the letters in a column are treated as if
they have arisen from a common ancestral state. All
the algorithms for computing MSAs, however, explic-
itly or implicitly optimize cost functions (such as a sum
of pair score) that are unaware of the detailed phyloge-
netic structure of the data set. This optimization prob-
lems, furthermore, are NP hard [1,2] and hence can be
solved only with (heuristic) approximation algorithms.
MSAs, thus, are necessarily only approximations to a per-
fect assignment of homologous sequence positions. As
most alignment methods internally use a guide tree rep-
resenting a rough estimate of the particular phylogeny
to determine the order in which taxa are treated, MSAs
incorporate an implicit phylogenetic assumption that can
be biased relative to the unknown true phylogenetic
tree.
At the current state of the art, these issues are unavoid-

able at least in the analysis of large data set, although for
small examples it may be feasible to employ methods that
concurrently estimate alignments and trees directly from
unaligned sequence data [3,4]. Even in these cases biases
from non-treelike evolution and insufficient knowledge
remain. This is in particular true for the mechanisms of
in/del formation.
It is good practice in phylogenetic studies, therefore,

to estimate the reliability of the phylogenetic reconstruc-
tions a posteriori. Most commonly, measures such as the
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bootstrap or jackknife support or parameters such as the
consistency index or the retention index, see e.g. [5] are
used. The latter estimate the prevalence of homoplastic
characters relative to the reconstructed tree.
An alternative approach, which is less frequently

employed in phylogenetic studies, is to investigate the
data set for its information content and possible source
of problems already before even starting to compute trees.
In this chapter we briefly review the most promising
approaches for a priori quality control, focusing on recent
developments.

Measures of tree-likeness
Distance-based measures
Tree reconstruction based on uncorrected distances
obtained from discrete characters can lead to incor-
rect trees. Effects such as long branch attraction [6]
have long been known and continue to be discussed in
the literature, see e.g. [7]. The corresponding distances
often deviate from additivity as indicated by conflict-
ing support for alternative trees, and hence indications
for misleading signals can be obtained from measures of
tree-likeness.
A fundamental theorem of mathematical phylogenetics

asserts that a metric d on a finite set X of taxa forms
an additive tree if and only if every quartet (set of four
taxa) has this property [8,9]. It appears natural, there-
fore, to use quartets to measure tree-likeness of a data
set. Among four taxa {A,B,C,D} there are six distances
which can be grouped into three pairs: d(A,B) + d(C,D),
d(A,C) + d(B,D), and d(A,D) + d(B,C). Ordering these
three sums by magnitude, we obtain three parameters
L ≥ M ≥ S, from which in turn we derive two split
lengths α = (L − S)/2 and β = (L − M)/2, see Figure 1A.
The quadruple is a tree if and only if L = M, i.e.,
β = 0.
The basic idea of statistical geometry [11,12] is to con-

sider quadruples first in terms of distances and then
in terms of sequence patterns. Three types of quadru-
ple geometries can be distinguished based on distances
alone:

1. L = M = S. In this case α = β = 0, the quadruple is
an ideal bundle.

2. L = M > S. In this case α > 0 and β = 0 so that the
quadruple defines a single split.

3. L > M > S. In this generic case the data deviate from
tree structure.

It can be shown that the ratio β/α approaches 0.5 for
random sequences, i.e., complete loss of phylogenetic sig-
nal. Averaging the parameters α and β over all quadruples
that can be formed from a data set thus provide already a
good measure for its tree-likeness.

The δ-plots [13] build upon statistical geometry and
represent the tree-likeness β/α of quartets in terms
of a histogram. For an individual taxon a measure for
tree-likeness can be obtained by considering the tree-
likeness of all quartets to which it belongs. As sug-
gested e.g. in [13], removing taxa with poor individual
tree-likeness can result in increased accuracy of tree
estimation.
It is important to note that the assessment of distance

measures is not necessarily sufficient. Perfectly tree-like
distances can still support an incorrect tree in realistic
examples. Instructive cases are discussed in detail in [14].
A possible source of such biases is in particular the use of
an incorrectmodel for the transformation of character dif-
ferences to distances. A more detailed picture is obtained
when the alignment columns for a sequence quadruple are
inspected.

Character-based methods
Recording for each column of a given alignment of four
sequences only which of the sequences have the same
character states we distinguish 16 column types that fall
into just five classes k: all equal (1), one triple (4), two
pairs (3), one pair (6), and all different (1). For alphabets
with less than 4 letters not all of these can be realized.
Given a model of evolution it is then possible to com-
pute the expected values of the numbers dk of occurrences
of columns of type k, 0 ≤ k ≤ 4, as a function of
the divergence (number of substitution events per site).
From these value one can then obtain refined parame-
ters for tree- and bundle-likeness, see [11,12] for more
details.
An alternative approach is to interpret the 16 column

types as support for one of the three possible unrooted
trees. Each quadruple, thus, can be associated with a rela-
tive support (p1, p2, p3) for the three geometries. Properly
normalized these values can be plotted in simplicial coor-
dinates, Figure 1B. This idea underlies the Quartet Map-
ping method [15] and its special case Likelihood Mapping
[16], where the values of pi are computed as maximum
likelihood estimates for the probabilities of the three tree
topologies. Quartet mapping can also be used to resolve
the relationships between four groups A, B, C, and D that
are a priori known to be monophyletic. A special case,
in which A = {x} is just a single sequence is the prob-
lem of assigning individual genes to paralog groups. This
technique, implemented in the software tool quartm, has
been used successfully e.g. to analyze short PCR frag-
ments of homeobox sequences [10,17,18]. Figure 1 delib-
erately shows an example of extremely information-poor
data.
A generalization to five taxa has been attempted more

recently [19]. Finding the best planar visualization of the
space representing the 15 possible unrooted trees for a
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Figure 1 Statistical Geometry and Quartett Mapping. (A) The distances among four taxa {A, B, C,D} can always be represented in terms of six
parameters: four splits of one taxon compared to the other three, and the two dimensions of central box. For β = 0 we obtain a tree. (B)
Comparison of the sequence of a short PCR fragment of the homeobox sequence of a Hiodon Hox-A10 gene compared to three sets of
homologous Hox-A10 sequences: the HoxA10a and HoxA10b paralogs of crown group teleost fishes and the unduplicated HoxA10 genes of
chondrichtyes and sarcopterygians. The colored area is the convex hull of the data points, the big dot indicated the center of mass, from [10].

given set of input data is a rather difficult optimization
problem. PentaPlot [20] uses a genetic algorithm for
this purpose.
On a set X of n taxa there are 2n−1 − 1 distinct splits,

i.e., bipartitions of the taxa into exactly two non-empty
sets. Weight vectors �q over the set of splits are related
to “pattern probability vectors” �p assigning probabilities
to characters by means of the Hadamard transform �p =
H−1 exp[H�q], where vector exponentiation is interpreted
component-wise [21], see [22] for a modern presentation.
Intuitively, the Hadamard transformation accounts for
multiple state changes of a given character and provides a
direct link between observed character states and splits in
the underlying data. This connection can be used assess
tree-likeness of the data by analyzing the split-spectrum.
In addition to a support value qs for a given split an incom-
patibility score can be defined as the sum of the supports
for all splits s’ that cannot occur together with s in the
same tree. This information is conveniently summarized
in so-called Lento-plots [23]. Spectronet provides an
implementation [24]. A related method summarizes the
Hadamard weight spectrum into three categories: the
splits supporting external and internal branches of
the optimal tree as well as the splits contradicting this
tree. Plotting the relative weights of these three categories
in barycentric coordinates produces a “treeness trian-
gle” [25], from which deviation from tree-likeness can be
assessed visually.

Alignment quality
Large evolutionary distances inevitably entail a large num-
ber of homoplastic sites. As most protein-coding genes
show dramatic variations in substitution rates that are
not uncorrelated across the sequence, this often leads to
a patchwork pattern of phylogenetically informative and
effectively randomized regions. Alignment errors accu-
mulate in highly variable regions and may produce effec-
tively “homoplastic sites”. Both simulation studies [26]
and evaluations of real-life data [27] demonstrated that
alignment errors can significantly change the outcome of
phylogenetic analyses. There is no consensus in the litera-
ture, furthermore, how tolerant phylogenetic methods are
to multiple substitutions [28-30].
Consequently, one may try to improve the accuracy

of tree reconstruction by eliminating all putative homo-
plastic or otherwise corrupted sites. A simple approach
towards this end is to exclude all third-codon posi-
tions of protein-coding sequences. Since the quality of
tree reconstruction decreases with decreasing sequence
length, it is important not to remove too many sites from
an alignment, however. For example, while certain first-
and second-codon positions may be essentially constant
(and therefore phylogenetically useless) or hyper-variable
(and hence even misleading), third-codon positions of
protein-coding genes can well be informative and thus
they should not be discarded outright [31]. Instead, one
would like to distinguish clearly homoplastic or otherwise
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corrupted sites from putative phylogenetically informative
sites so that they — and no others — can be excluded or
down-weighted.
The complication with such an endeavor, however, is

that, formally, homoplasy is defined relative to a given
phylogenetic tree, the very object that molecular phy-
logenetics is attempting to derive from the alignment.
Measures such as the consistency index (the minimum
possible number character changes divided by the number
of steps observed along the tree) thus cannot be computed
prior to estimating the phylogenetic tree itself. Conse-
quently, the a priori is a difficult problem since a useful
method has to ensure that its approach to homoplasy
detection does not implicitly presuppose a phylogenetic
tree later to be derived from the same data.
Historically the first tool for removing suspicious parts

of alignments was Gblocks [32,33], which selects blocks
from an input alignment using a set of rules that mimic
many researcher’s strategy in manually pruning align-
ments. User-defined parameters set cut-offs so that the
retained regions do not contain large segments of con-
tiguous non-conserved positions, are depleted in gap
positions, and exhibit high levels of conservation of flank-
ing positions. While intuitively plausible, these rules are
not based in some underlying theory. Nevertheless, this
approach can lead to better trees, which, surprisingly,
often exhibit reduced bootstrap support, indicating that
“divergent and problematic alignment regions may lead,
when present, to apparently better supported although, in
fact, more biased topologies” [33].
EST-based phylogenomic studies are in particular

plagued by incomplete sequences and thus bymissing data
in MSAs. This can introduce surprisingly large biases and
substantially compromised phylogenetic accuracy [34,35].
As a remedy, reap [34] masks (i) alignment columns con-
taining many gaps and/or highly diverse amino acids and
(ii) sequences that either have little overlap with other
sequences or appear to be systematically misaligned. The
cutoffs used in reap were determined empirically to
“strike the best compromise between topological accuracy
and sequence retention” [34].

Noisy
The noisy [36] method is based on the observation that
distances derived from pairwise sequence comparisons
give rise to fairly robust circular split systems [37]. Circu-
lar splits systems can be represented as a circular ordering
of the taxa and are consistent with a large number of pos-
sible tree topologies [38,39], namely all those that can be
inscribed in the circularly ordered taxa without crossings
of tree edges. The utility of circular orderings computed
e.g. by the Neighbor-Net [40] or Qnet [41] algorithms
for our purposes is that phylogenetically more closely
related taxa are preferentially placed closer together in the

cyclic ordering. Conversely, similar trees necessarily cor-
respond to similar cyclic orderings. Thus, if a character,
i.e., an alignment column, is phylogenetically “useful”, its
character states will appear “clustered” along the cyclic
ordering underlying any tree that is a reasonable approx-
imation of the true phylogeny, independent of the details
of the branching order in individual subtrees. In con-
trast, if a character is completely randomized, we will
observe that character states are randomly arranged along
the cycle.
For a given cyclic ordering π , the amount of cluster-

ing in alignment column i is conveniently quantified as
the number ν(π , i) of “break points”, i.e., adjacent dis-
tinct character states. For constant alignment columns
ν(π , i) = 0, for non-constant sites we have ν(π , i) ≥ 2.
This number has to be compared with the numbers
expected for a random permutation of the letters observed
in alignment column i. This background distribution is
easily generated by means of shuffling, i.e., by replacing π

with a random permutation π ′ drawn from a uniform dis-
tribution.We thenmeasure the fraction q(π , i) of sampled
random permutations with ν(π ′, i) > ν(π , i). The value of
q(π , i) is thus an estimate for the probability that the col-
umn i is not randomized. The noisy program removes
all alignment columns with q < qcutoff. It is reassuring to
observe that the number of sites that are deemed random-
ized is minimized by phylogenetically plausible circular
orderings π , Figure 2(A).
Two effects have to be considered. On the one hand,

columns with small values of q contribute little useful
information. On the other hand, a large absolute number
of informative sites is necessary to obtain reliable trees.
Thus qcutoff must not be too large. The most effective val-
ues of qcutoff also depend on the tree topology. As shown
in Figure 2(B) caterpillar trees admit larger improvements
in bootstrap support than the balanced trees.
The analysis of artificial data sets suggests a set of simple

rules that allow the user to decide under which conditions
it makes sense to use noisy to process MSAs prior to
using them for phylogenetic reconstruction:

(1) If the original alignment already yields trees with very
high average bootstrap support, there is nothing to be
gained.

(2) Data-sets with less than about 10 taxa are unlikely to
improve.

(3) The best cutoff value for q depends on the tree
topology and in particular on the number of taxa. It
pays in general to determine the maximum of the gain
in some parameter of tree stability as a function of q
and to use the corresponding optimal cutoff value.

The current release [42] of noisy can process DNA,
RNA, and protein sequences.
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Figure 2 noisy. (A) The fraction of sites marked as “randomized” depend on the cyclic ordering. Phylogenetically reasonable ordering such as
those computed by NeighborNet, QNet, or from the guide tree of the alignment program ClustalW have a nearly minimal fraction of
putative randomized alignment sites. (B) The average bootstrap support increases for moderate values of q i.e., as long as not too large a fraction of
alignment columns are removed. The effect increases with the size of the data set. (C) Distributions of randomized positions can differ substantially
between data sets, here 18S RNA of Coleoptera (l.h.s.) and mitochondrial atp6 gene of squamata (r.h.s.). Red indicates randomized positions, light
red singletons, green parsimony informative sites. The bars below indicate included and excluded parts of the alignment, respectively. (Adapted
from [36]).

Aliscore
In contrast to noisy, aliscore has been designed to
detect random sequence similarity in MSAs based on
pairwise similarity profiling of sequences [43,44]. It is
based on the fact that observed sequence motive simi-
larity between a pair of sequences can be distinguished
from random similarity by generating a null distribu-
tion of random similarity given the motive size and
base/aminoacid composition of the sequences. The null
distribution is generated by permutations of the origi-
nal observed sequences generating random similarity. A
sliding window is used to generate a profile score of the
inferred randomization between pairs of sequences. This
can be done with all possible pairwise comparisons within
aMSA generating a suite of pairwise profile scores. Finally,
these profile scores are used to average over each MSA
alignment site in order to generate a consensus profile of
sequence similarity within a MSA. This consensus profile
informs whether alignment sections contain predomi-
nantly random similarity or not, Figure 3. The principle
of aliscore is thus entirely different to site-focused
approaches like noisy, reap [34] or gblocks [32,33].
For a detailed explanation of the algorithm we refer to [43].
The aliscore approach has been shown to work well

in simulations [43,44], single gene [45-49] and multi-gene

approaches [50]. However, as for every masking program
arbitrary decisions have to be made as well. For example,
the sliding window size has to be set by the user. A larger
window size makes the algorithm less sensitive to small
sections of randomization. A natural minimal window size
is 4, below this window size a distinction between random
or non-random similarity is not possible.
A big advantage of the approach is that single splits can

be directly evaluated. aliscore offers the possibility to
define a split in the MSA from which pairwise compar-
isons are drawn. It thus offers the possibility to generate
a consensus profile for just the split under consideration.
This tool can become particularly important, if different
outgroup taxa are compared with a set of ingroup species.
The best outgroup choice is the set of taxa which mini-
mizes the extent of randomization between outgroup and
ingroup. The current release of aliscore can process
DNA, RNA, and protein sequences.

Quality of a datamatrix: MARE
A typical feature of phylogenomic data is the frequent
occurrence of missing data in concatenated “supermatri-
ces” up to the point where more than 80% of the data
are missing [51,52]. The effect of missing data on tree
inference is still unclear and it appears that a general rule
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Figure 3 Graphical output of aliscore for an alignment of arthropod 18S gene sequences. The consensus profile is colored in green and
red. Sections of the consensus profile larger than zero are colored in green, below zero in red. In this particular alignment, several small sections are
dominated by strong randomness, indicated in red.

can not be derived from several simulation and empir-
ical studies [51,53,54]. The take-home message of these
studies is that data masking, which can increase data satu-
ration, seems advisable. In its simplest form, we are given
a bipartite graph G = (X ∪ Y ,E) describing by its edges
{x, y} ∈ E which gene x ∈ X is present in which species y ∈
Y . An ideal data set is a maximal biclique, i.e., a maximal
complete subgraph of G [55,56]. Since this would lead to
the removal of too many genes and taxa, in a relaxed ver-
sion, one seeks a quasi-biclique [57], requiring that each
gene is present at least in a prescribed fraction of taxa,
and each taxon is represented by a minimum fraction of
genes. It is worth noting that the same problem appears in
the analysis of protein-protein interaction networks and
has received considerable attention in this context [58].
Although the maximum vertex biclique problem is solv-
able in polynomial time [59], many of its variants [60]
and in particular the more relevant quasi-biclique prob-
lems are NP-complete [58,61]. Thus exact algorithms are
applicable only to to relatively small data. In addition,
earlier methods do not consider differences in the infor-
mation content of taxa and genes, which might be a major
drawback.

In simulation studies we were able to show that the
likelihood of reconstructing a correct tree dramatically
decreases if data saturation is below 30%. Selection of a
data subset of less genes and taxa but with higher data
saturation can potentially alleviate the problem. However,
it seems advisable that during the process of data selec-
tion, potential phylogenetic signal of each single gene and
taxon should be considered in order not to only maximize
data saturation but also information content of the data
set. The proposed algorithm implemented in the software
package mare does exactly this, Figure 4. It is designed in
a way that (1) the potential information content of genes
and taxa is evaluated using geometry mapping [15] and
(2) this information is used in combination with informa-
tion on missing data to select an optimal data subset. The
selection of the optimal data subset is based on a simple
optimization algorithm in which the reduction of the total
data matrix is penalized and the increase in total informa-
tion content of the matrix favored. The selected optimal
data subset corresponds to a quasi-biclique with high
information content. Simulations show that the chance
to reconstruct the correct tree increases tremendously
when the raw data are processed in this manner [62].

Figure 4 Comparison of unreduced and reduced representations of a concatenated supermatrix. Taxa are represented in rows and genes in
columns. If a gene has not been identified or sequenced in a taxon, this entry is left white in the matrix, blue entries indicate the presence of gene
sequences for that taxon. Shades of blue correspond to information content of the specific gene. Dark blue represents high information content
and light blue low information content. The representation of the original supermatrix is placed in the upper panel. Columns are sorted according
to their information content. The reduced supermatrix in the lower panel was generated with the software mare and represents an optimal
selection of taxa and genes from the original supermatrix according to the criteria developed in this mare approach.
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The current implementation of mare handles protein
sequences only.

Concluding remarks
Although many studies have been directed at a better
understanding of artifacts in phylogeny reconstruction
such as long branch attraction or homoplasy [7,63,64], we
still lack a comprehensive understanding of how biases
can be recognized in data sets prior to the estimation of a
phylogenetic tree. Instead, often time extensive computa-
tional resources are expended to reconstruct phylogenies
with disappointing results that can be identified only a
posteriori as artifacts. It is then problematic at best to
distinguish artefactual input data from issues such as
inadequate models of evolution.
In this minireview we have briefly discussed first

attempts at an a priori assessment of different aspects of
data quality that aim at the identification of potentially
problematic taxa or characters. It is of utmost importance
to ensure that suchmethods do notmake any assumptions
on phylogenetic relationships, because such implicit infor-
mation may then inadvertently be enforced in the “data
cleaning” step, and thus transmitted to the phylogenetic
reconstruction methods.
Despite very encouraging results obtained with tools

such as noisy, aliscore, and mare, much additional
research focused on dissecting confounding signal will be
necessary for a comprehensive understanding of analy-
ses artifacts. Noisy and aliscore address the decay
of phylogenetic signal induced by multiple saturation, the
aliscore algorithm can deal with heterogeneous com-
position of nucleotide sequences, and mare indirectly
scores the influence of missing data as well. However, all
of these approaches do not directly dissect the separate
influence of these confounding factors on tree recon-
structions. This must be a focus of future work, because
substitutional saturation, heterogeneous sequence com-
position, non-stationary substitution processes, and the
non-random distribution of missing data can constitute
strong confounding factors, in particular in phylogenomic
analyses. It surprising, therefore, that a standard canon of
tools to study these effects a priori to tree reconstructions
is still missing.
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