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Abstract

Background: Tandem duplication, in the context of molecular biology, occurs as a result of mutational events in
which an original segment of DNA is converted into a sequence of individual copies. More formally, a repetition or
tandem repeat in a string of letters consists of exact concatenations of identical factors of the string. Biologists are
interested in approximate tandem repeats and not necessarily only in exact tandem repeats. A weighted sequence is a
string in which a set of letters may occur at each position with respective probabilities of occurrence. It naturally arises
in many biological contexts and provides a method to realise the approximation among distinct adjacent occurrences
of the same DNA segment.

Results: Crochemore’s repetitions algorithm, also referred to as Crochemore’s partitioning algorithm, was introduced
in 1981, and was the first optimalO(n log n)-time algorithm to compute all repetitions in a string of length n. In this
article, we present a novel variant of Crochemore’s partitioning algorithm for weighted sequences, which requires
optimalO(n log n) time, thus improving on the best knownO

(
n2

)
-time algorithm (Zhang et al., 2013) for computing

all repetitions in a weighted sequence of length n.
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Background
A fundamental structural characteristic of a string of let-
ters is its periodicity. Closely related to periodicity is the
notion of repetition. Repetitions in strings are highly peri-
odic factors, that is, two ormore adjacent identical factors.
For instance, the string TATA is a repetition in the string
CTATAGT. Clearly a string may contain a quadratic num-
ber of repetitions. In 1981, it was shown by Crochemore
that there could be O(n log n) maximal repetitions in
a string of length n and an O(n log n)-time, thus opti-
mal, algorithm was presented [1]. In 1999, Kolpakov and
Kucherov presented an O(n)-time algorithm to compute
the most compact representation of all repetitions known
as runs [2].
Tandem duplication, in the context of molecular

biology, occurs as a result of mutational events in which
an original segment of DNA is converted into a sequence
of individual copies. It usually results from replication
slippage or from certain recombination events, such
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as unequal crossing-over or unequal sister chromatide
exchange [3]. In this context, the result of a tandem dupli-
cation event is termed a tandem repeat. It appears in both
eukaryotic [4] and prokaryotic [5] genomes.
Through time, individual copies within a tandem repeat

may change by additional, uncoordinated, mutations, and
so only approximate tandem copies may be present. The
major bottleneck in identifying biologically relevant tan-
dem repeats in genomic sequences is a certain variation
threshold that must be admitted between the copies of
the repeated segment. In other words, biologists are inter-
ested in approximate tandem repeats and not necessarily
only in exact tandem repeats. A plethora of algorithms
and tools for the identification of tandem repeats mea-
suring this approximation have already been released (for
instance, see [6-8]).
The simplest and perhaps most widely-used notion for

measuring this approximation is the notion of Hamming
distance [9]. Another way of measuring this approxima-
tion is using a probabilistic model of biological sequences.
Single nucleotide polymorphisms, as well as errors intro-
duced by wet-lab sequencing platforms during the process
of DNA sequencing, can occur in some positions of a
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DNA sequence. In some cases, these uncertainties can
be accurately modelled as a don’t care letter. However, in
other cases they can be more subtly expressed, and, at
each position of the sequence, a probability of occurrence
can be assigned to each letter of the nucleotide alpha-
bet; this process gives rise to a weighted sequence. For
instance, consider a IUPAC-encoded [10] DNA sequence,
where the ambiguity letter M occurs at some position of
the sequence, representing either base A or base C. This
gives rise to a weighted DNA sequence, where at the cor-
responding position of the sequence, we can assign to A
and C an occurrence probability of 0.5.
A great deal of research has been conducted for comput-

ing various types of regularities in weighted sequences (for
instance, see [11-15]). The efficiency of the proposed algo-
rithms relies on the assumption of a given constant, the
cumulative weight threshold, defined as the minimal prob-
ability of occurrence of factors in the weighted sequence.
Recently, the authors of [16] proposed an O

(
n2

)
-time

algorithm for computing all tandem repeats in a weighted
sequence of length n.

Our contribution
In this article, we present the first optimal algorithm for
computing all tandem repeats in a weighted sequence. We
improve on the time complexity of the best-known algo-
rithm for computing all tandem repeats in a weighted
sequence of length n from time O

(
n2

)
to an optimal

O(n log n). A preliminary version of this work appeared
in [17].

Preliminaries
In order to provide an overview of our results and algo-
rithms, we begin with a few definitions, generally follow-
ing [18].
An alphabet � is a finite non-empty set of size σ , whose

elements are called letters. A string on an alphabet �

is a finite, possibly empty, sequence of elements of �.
The zero-letter sequence is called the empty string, and is
denoted by ε. The length of a string x is defined as the
length of the sequence associated with the string x, and is
denoted by |x|. We denote by x[i], for all 0 ≤ i < |x|, the
letter at index i of x. Each index i, for all 0 ≤ i < |x|, is a
position in x when x �= ε. It follows that the i-th letter of x
is the letter at position i in x.
The concatenation of two strings x and y is the string of

the letters of x followed by the letters of y. It is denoted
by xy. A string x is a factor of a string y if there exist two
strings u and v, such that y = uxv. Consider the strings
x, y,u, and v, such that y = uxv. If u = ε, then x is a prefix
of y. If v = ε, then x is a suffix of y. Let x be a non-empty
string and y be a string. We say that there exists an occur-
rence of x in y, or, more simply, that x occurs in y, when
x is a factor of y. Let x and y be two strings on �, such

that |y| ≥ |x| and x = y
[
i . . j

]
. We say that x occurs at the

starting position i in y.
A weighted string x on an alphabet� is a finite sequence

of n sets. Every x[i], for all 0 ≤ i < n, is a set of
ordered pairs

(
sj,πi

(
sj
))
, where sj ∈ � and πi

(
sj
)
is

the probability of having letter sj at position i. Formally,
x[i] =

{(
sj,πi

(
sj
)) |sj �= s� for j �= �, and

∑
j πi

(
sj
) = 1

}
.

A letter sj occurs at position i of a weighted string x if
and only if the occurrence probability of letter sj at posi-
tion i, πi(sj), is greater than 0. A string u of length m
is a factor of a weighted string if and only if it occurs
at starting position i with cumulative occurrence proba-
bility

∏m−1
j=0 πi+j

(
u

[
j
])

> 0. Given a cumulative weight
threshold 1/z ∈ (0, 1], we say that factor u is valid, or
equivalently that factor u has a valid occurrence, if it
occurs at starting position i and

∏m−1
j=0 πi+j

(
u

[
j
]) ≥ 1/z.

For clarity of presentation, in the rest of this article, a
set of ordered pairs in a weighted string is denoted by
[(s0,πi (s0)) , . . . , (sσ−1,πi (sσ−1))].

Example 1. Let the following weighted string x and the
cumulative weight threshold 1/z = 1/4.

TGTCAT is not a factor of x; TATCCT is a factor of x starting
at position 3; and TATCAT is a valid factor of x starting at
position 3 with cumulative occurrence probability 0.3.

For every string x and every natural number n, we define
the n-th power of the string x, denoted by xn, by x0 = ε

and xk = xk−1x, for all 1 ≤ k ≤ n. A string is said to
be primitive if it cannot be written as ve, where e ≥ 2. A
repetition in x is a non-trivial power of a primitive string
occurring in x.
Formally, a repetition ue, e ≥ 2, in x is defined

as a triple (i, p, e) such that: u = x
[
i . . i + p − 1

] =
x
[
i + p . . i + 2p − 1

] = . . . = x
[
i + (e − 1)p . . i + ep − 1

]
;

ue+1 does not occur at position i; and u is primitive. A rep-
etition is maximal if i − p < 0 or ue does not occur at
x
[
i − p

]
. The integers p and e are called the period and the

exponent of the repetition, respectively. In other words, a
repetition is a primitively-rooted integer power ue which
is not followed by another occurrence of u; and a maximal
repetition is a primitively-rooted integer power ue which
is not followed or preceded by another occurrence of u. If
e = 2 the repetition is called square.
A repetition v = ue, e ≥ 2, in a weighted string

x is defined as a quadruple (i, p, b, e) such that u =
v
[
0 . . p − 1

] = v
[
p . . 2p − 1

] = . . . = v[ (e − 1)
p . . ep − 1], where v is a factor of length ep of x occurring
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at position i, and each occurrence of u in v is a valid factor
of x; ue+1 does not occur at position i; u is primitive; and b
is a set of ordered pairs ( j, a), where 0 ≤ j < p and a ∈ �,
denoting u

[
j
] = a. A repetition is maximal if i − p < 0

or ue does not occur at x
[
i − p

]
. The need for set b in

uniquely defining a repetition can be seen in Example 2.

Example 2. Let x =aab[(a, 0.5)(b, 0.5)][(a, 0.5)(b, 0.5)]
bab and 1/z = 1/2. Then (1, 3 {(2,a)}, 2) is a repetition
in x, such that u = aba and v = abaaba.

In this article, we are mainly concerned with the follow-
ing problem.

Problem 1. Given a weighted string x of length n and a
cumulative weight threshold 1/z ∈ (0, 1], find all repeti-
tions in x.

Algorithm
In the following discussion, we assume that each position
contains at least one letter with occurrence probability
greater than or equal to 1/z. If this is not the case, the
weighted string can be split around these positions, and
each resulting weighted string can be processed separately
according to the algorithm with no time penalty.
The first stage of the algorithm is to perform a simple

filtering on the weighted string to filter out all those let-
ters that are below the threshold. This is required as if the
alphabet is not constant, we may have many letters with
low occurrence probability that are not of interest. We
simply read the entire string and keep only those letters
with occurrence probability greater than or equal to 1/z;
these are at most z for each position, so still constant. We
are thus left with a string of sizeO(n), and the entire stage
takes timeO(σn). For clarity of presentation, in the rest of
this article, we assume that the string resulting from this
filtering step is the input weighted string x.
After this filtering stage, we perform a colouring stage

on x, similar to the one before the construction of the
weighted suffix tree [12], which assigns a colour to every
position in x according to the following scheme:

• mark position i black (B), if none of the possible
letters at position i has occurrence probability greater
than 1 − 1/z.

• mark position i grey (G), if one of the possible letters
at position i has occurrence probability greater than
1 − 1/z.

• mark position i white(W), if one of the possible
letters at position i has occurrence probability of
occurrence 1.

It should be noted that the colouring stage only applies
when z ≥ 2; should it be less than 2, then all positions are

either grey or white. An example of the colouring stage
can be seen in Table 1. Intuitively, black positions are the
only positions where multiple letters may be chosen for
any valid factor that includes the black position. Due to
this, black positions are also called branching positions.
After the colouring stage, we perform a generation

stage, similar to the one performed during the construc-
tion of the weighted suffix tree, where a set of factors of x
is generated; we refer to this set as extended factors. The
intuition behind extended factors is to generate a set of
strings such that all the valid factors of the weighted string
occur in at least one extended factor. The generation of
extended factors is performed once from each black posi-
tion. We scan x from left to right and for the currently
considered black position, we create a list of possible
extended factors starting from this position. We generate
a factor starting with each letter at the black position and
one empty string. These will then be extended to create
the extended factors starting from that black position. For
each extended factor, the cumulative occurrence probabil-
ity is maintained during its generation, and when it breaks
the threshold we stop extending it. This probability is
updated by considering the actual occurrence probability
for letters at black positions, but letters at grey positions
are treated as letters at white positions (only one possible
choice). Extending these factors is performed by continu-
ing to scan x and appending to the currently considered
factors the same single letter if the position is white or
grey and by creating new factors at black positions. At a
black position, we copy each current extended factor and
append one letter from the black position to each copy.
We stop extending an extended factor when we reach a
black position which causes it to violate the threshold. The
procedure outlined above is similar to the generation step
in [12], however, here, we generalise the procedure to any
finite alphabet, by noting that the branching factor for any
finite alphabet can be no more than 1/(1/z) + 1 = z + 1
for the first branching and z for the rest; as no more than z
letters can have an occurrence probability greater than or
equal to 1/z.

Example 3. Let x =aab[(a, 0.5)(b, 0.5)][(a, 0.5)(b, 0.5)]
bab and 1/z = 1/2. The colouring corresponding to x
is WWWBBWWW. We scan x from left to right and extend

Table 1 Colouring of x for 1/z = 1/2

Position 0 1 2 3 4 5 6 7 8 9 10

x A (A, 0.1) T T (A, 0.5) T C (A, 0.6) T T T

(C, 0.8) (C, 0.5) (C, 0.2)

(G, 0.1) (G, 0.0) (G, 0.0)

(T, 0.0) (T, 0.0) (T, 0.2)

Colour W G W W B W W G W W W
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until the first black position. At this point we have factor
aab and at the black position we branch and get aaba
and aabb. Extending these any further will violate the
threshold so we stop. The extended factors generated from
position 0 of x are as follows: aaba and aabb. We con-
tinue with factors a, b, and ε at the black position 3. We
then reach the black position 4 and for factors a and b this
violates the threshold so we stop. However, the empty string
can be extended, so we split it into two strings, as we are at
a black position, and continue extending it. The extended
factors generated from the black position 3 are as follows: a,
b, abab, and bbab. We continue with factors a, b, and ε at
the black position 4. The extended factors generated from
the black position 4 are as follows: abab, bbab, and bab.

We recall an important lemma on howmany black posi-
tions may be contained within any valid (or extended)
factor of a weighted string.We also give a slightlymodified
proof for any finite alphabet.

Lemma 1 ([12]). Given a weighted string x and a cumu-
lative weight threshold 1/z ∈ (0, 1], any valid factor of x
contains at most

⌈
log z/ log

(
z

z−1

)⌉
black positions.

Proof. Consider a valid factor u of x containing � black
positions and no grey positions. Any letter at a black
position has occurrence probability at most 1 − 1/z. The
cumulative occurrence probability of u with � black posi-
tions is no more than (1 − 1/z)�, and it must be the case
that (1 − 1/z)� ≥ 1/z since u is valid; by rearranging and
taking logarithms we obtain the claimed result.

Note that, additionally, Lemma 1 holds exactly for
extended factors as they are factors which are treated
as only containing black and white positions. From the
generation of extended factors we get the following.

Lemma 2 ([12]). Given a weighted string x and a cumu-
lative weight threshold 1/z ∈ (0, 1], any valid factor of x
occurs in at least one extended factor.

To achieve the main result of the article, we first solve
a related sub-problem on the computation of valid repe-
titions. Additionally, we define the notion of an extended
repetition in the process. An extended repetition in x is a
repetition occurring in an extended factor of x. A valid
repetition in x is a repetition ue such that the cumulative
occurrence probability of ue is at least 1/z. We are now in
a position to define the following subproblem.

Problem 2. Given a weighted string x of length n and
a cumulative weight threshold 1/z ∈ (0, 1], find all valid
repetitions in x.

Intuitively, the difference between Problems 1 and 2 is
that in Problem 1 we want to find repetitions ue such that
each u occurs with cumulative occurrence probability at
least 1/z; whereas in Problem 2wewant to find repetitions
ue such that the entire factor ue occurs with cumulative
occurrence probability at least 1/z.

Lemma 3. Given a weighted string x and a cumulative
weight threshold 1/z ∈ (0, 1], any valid repetition in x
occurs in at least one extended factor.

Proof. By Lemma 2, any valid factor of x occurs in
at least one extended factor. By the definition of valid
repetitions, any valid repetition is a valid factor.

For each generated extended factor, we run
Crochemore’s partitioning algorithm for maximal rep-
etitions; the output is all maximal extended repetitions
in x. After computing all maximal extended repetitions,
we cannot simply report all of these as valid repetitions.
All valid factors must occur in an extended factor but
extended factors may contain factors which are not
valid. This is a consequence of treating grey positions
as white during the generation of extended factors [12].
Since not all maximal extended repetitions are valid
repetitions, we must therefore break up these maxi-
mal extended repetitions into valid repetitions to solve
Problem 2.
In order to break up the maximal extended repetitions,

we must compute some additional information. To deter-
mine how long any valid repetition should be, we must
know, for each position i in an extended factor, the length
of the longest valid factor starting at position i. The com-
putation is based on the observation that the longest fac-
tor with cumulative occurrence probability greater than or
equal to 1/z for the position i + 1 has length greater than
or equal to that of position i. To compute this we maintain
an additional cumulative weight threshold π ′. This addi-
tional threshold is reused so that we can easily compute
the longest valid factor for some position i + 1 from posi-
tion i. We store the computed lengths in an array LF of
integers.
We start with the first position in an extended fac-

tor and compute the longest factor within the threshold
by multiplying together the occurrence probability of the
letters we encounter and storing this in π ′. If multiply-
ing the probability of some letter at position j > 0
causes π ′ < 1/z, we set LF[0] := j − 1. To pro-
ceed, we remove by division the occurrence probability
of the first letter from π ′. If π ′ < 1/z, then we set
LF[1] := j − 1; otherwise, we continue as before mul-
tiplying the occurrence probability of letters at positions
j + 1, j + 2, and so on, until the threshold is once again
violated. In general, for string x and some position i, we
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set LF[i] := max
{
|u| : ∏|u|−1

j=0 πi+j
(
u
[
j
]) ≥ 1/z

}
, where

non-empty factor u occurs at starting position i of x.

Example 4. Let x = [(a, 0.6)(c, 0.4)]bab[(a, 0.6)(d, 0.4)]
bab and 1/z = 1/2. The colouring corresponding to x is
GWWWGWWW. The only extended factor generated by this
weighted string is abababab. Starting at position 0, we set
π ′ := 0.6, that is, the probability that a occurs at position
0. We then consider the cumulative occurrence probability
of factors ab, aba, and abab, the probability of whose is
also 0.6. Now we consider the next letter at position 4 and
set π ′ := 0.36 < 1/2. We set LF[0] := 4, and remove the
occurrence probability of the first letter from the cumula-
tive occurrence probability by setting π ′ := 0.36/0.6 = 0.6.
Now we continue as before and consider the following
factors (which now start from position 1) baba, babab,
bababa, and bababab. We reach the end of the string
without breaking the threshold, and so we set LF[1] := 7,
LF[2] := 6, LF[3] := 5, and so on until LF[n − 1] := 1.

For each extended factor this takes time and space pro-
portional to its length. The sum of lengths of the extended
factors is linear in n by Lemma 5. We give an alternative
proof to the one given in [12] for any finite alphabet, both
for completeness and as we improve the bounds on the
constants slightly. For this alternative proof, we first need
to show the following lemma.

Lemma 4. Given a weighted string x and a cumula-
tive weight threshold 1/z ∈ (0, 1], any valid factor of x
occurs in at most z�(2� + 1) extended factors of x, where
� =

⌈
log z/ log

(
z

z−1

)⌉
.

Proof. By the definition of extended factors, each black
position initially generates z+1 extended factors; z includ-
ing the current black position and one that does not. At
each subsequent black position, each extended factor may
branch at most z times, and this occurs no more than �

times. From this we get that a black position generates no
more than z� + z� extended factors; z� from those that
initially include the current black position and another z�
from the one that does not.
Now consider some position i in the weighted string

x. Position i can only be in extended factors generated
by black positions to the left of it or at position i itself;
and we know that an extended factor can contain at most
� black positions. Position i can only be contained in
extended factors generated from the � + 1 black posi-
tions to the left. For the first � to the left, it can be
contained in any extended factor but for the � + 1th black
position to the left, it can only be contained in those
extended factors which do not include the � + 1th black
position.

By Lemma 2, all valid factors occur in extended fac-
tors and no valid factor can occur in strictly more
extended factors than its respective single-letter valid fac-
tors. Therefore it is sufficient to determine, for some
position i, the maximum number of occurrences of its
single-letter valid factors in extended factors. From the
abve analysis, we can see that each position can be in at
most �z� + z� = z�(2� + 1) extended factors.

We are now ready to establish the sum of lengths of
extended factors.

Lemma 5 ([12]). Given a weighted string x of length n
and a cumulative weight threshold 1/z ∈ (0, 1], the sum of
lengths of the extended factors of x isO(n).

Proof. Following the proof of Lemma 4, we see that each
position is in no more than z�(2�+1) extended factors. To
establish the sum of lengths of extended factors it is suffi-
cient to count howmany extended factors each position is
in; therefore the sum of lengths of all extended factors is
no more than z�(2� + 1)n = O(n).

The next step is to determine the set b for each
maximal extended repetition. This can be done in con-
stant time per maximal extended repetition. We com-
pute an array NB of integers of size n, such that for
each position i in x, NB [i] stores the index of the left-
most black position j > i; this can be done in lin-
ear time in n. For each maximal extended repetition
ue, we check all black positions in the first occurrence
of u. By Lemma 1, there can only be a constant num-
ber of black positions in u; finding the black positions
using NB takes time proportional to their number. It is
now a simple case of recording the position and the let-
ter present in the extended factor; this takes constant
time per maximal extended repetition, so time propor-
tional to the number of maximal extended repetitions in
total.
Given all the maximal extended repetitions, we can now

begin to break them up into valid repetitions. To achieve
this, we can check the length of the longest valid fac-
tor starting at position i of the extended factor, and then
determine the longest valid repetition starting from i. We
can continue checking the maximal extended repetition in
this manner reporting the length as we go. Note that in the
worst case, for each maximal extended repetition ue, we
may check the starting position of each occurrence of u.
As we show later (Lemma 7), this can be done efficiently.
We now establish the maximal number of extended rep-
etitions in x. Note that the work done by the algorithm
so far is no more than the maximal number of extended
repetitions.
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Lemma 6. Given a weighted string x of length n and a
cumulative weight threshold 1/z ∈ (0, 1], there could be
O(n log n) extended repetitions in x.

Proof. Consider the string x partitioned into q non-
overlapping segments Ni, 1 ≤ i ≤ q, each of which
contains � =

⌈
log z/ log

(
z

z−1

)⌉
black positions. Each

segment starts with the first black position of the segment
and ends immediately before what would otherwise be the
� + 1th black position of the segment. For some segment
Ni, each black position may generate 2z� extended factors.
By the definition of extended factors, each extended fac-
tor may contain no more than � black positions; so none
of the extended factors can extend past the next segment
Ni+1. Each of these extended factors may contribute to
the number of extended repetitions. There may be no
more than 2�z� extended factors from any Ni, and each is
of length nomore than |Ni|+|Ni+1|; so each extended fac-
tor may contribute O

(
(|Ni| + |Ni+1|) log(|Ni| + |Ni+1|)

)
extended repetitions. Each segment may contribute no
more than O

(
2�z� (|Ni| + |Ni+1|) log(|Ni| + |Ni+1|)

) =
O

(
(|Ni| + |Ni+1|) log(|Ni| + |Ni+1|)

)
extended repe-

titions. Summing the extended repetitions that each
segment may contribute, we achieve our claim that the
number of extended repetitions isO(n log n).

As previously mentioned, whilst breaking some maxi-
mal extended repetition ue into valid repetitions, we may
need to check up to e positions. The maximum number
of checks required will be the sum of the exponents of all
maximal extended repetitions returned by Crochemore’s
partitioning algorithm. Now we establish the maximal
sum of the exponents of maximal extended repetitions in
a weighted string.

Lemma 7. Given a weighted string x of length n and a
cumulative weight threshold 1/z ∈ (0, 1], the sum of expo-
nents of maximal extended repetitions in x isO(n log n).

Proof. Any primitive repetition ue can also be seen as
a sequence of overlapping primitive squares (as shown
in Example 6). We know that the maximal number of
occurrences of primitive squares isO(n log n) [19]; clearly
the sum of the exponents of primitive squares is also
O(n log n). By the definition of maximal extended rep-
etitions each square is only in one maximal extended
repetition. Therefore the sum of exponents of maxi-
mal extended repetitions is less than or equal to the
sum of exponents of primitive squares. This is also
O(n log n).

Note that an analogous version of Lemma 6 holds for
valid repetitions.We are now in a position to state our first
result.

Theorem 1. Problem 2 can be solved in optimal time
O(n log n).

Proof. Consider the string x partitioned into q non-
overlapping segments Ni, 1 ≤ i ≤ q, each of which
contains � =

⌈
log z/ log

(
z

z−1

)⌉
black positions. The

proof can follow, almost identically, that of Lemma 6
but instead of considering extended repetitions, we con-
sider the time contributed by each segment; this too is
O

(
(|Ni| + |Ni+1|) log(|Ni| + |Ni+1|)

)
per segment.

At this point, we have solved the subproblem which
forms the basis for our solution. Intuitively, the subprob-
lem finds repetitions v = ue, where factor v occurs with
cumulative occurrence probability greater than or equal
to 1/z. The idea behind our solution to Problem 1 is based
on the observation that a repetition of exponent e ≥ 3
is composed of overlapping occurrences of smaller repeti-
tions. We intend to compute smaller repetitions and, from
this, derive larger ones. Part of the process of computing
valid repetitions was to break up maximal extended repe-
titions below the threshold into smaller valid repetitions.
To determine the repetitions specified in Problem 1, we
reverse this process and compose longer repetitions from
small valid repetitions.
In order to solve Problem 1, we start by solving

Problem 2 for threshold k = 1/z2. The number of valid
repetitions reported for k can be shown to be O(n log n)

by the same argument as for Lemma 6; and the num-
ber of black positions in a valid factor is only a constant
amount higher than for the original threshold by a simi-
lar argument to the proof of Lemma 1. We pick k = 1/z2
as we wish to guarantee that we will at least find squares
such that each half may have cumulative occurrence prob-
ability greater than or equal to 1/z. We may also find
repetitions with a higher exponent and repetitions which
have a cumulative occurrence probability less than 1/z,
but we will explain how to filter these out using the same
techniques as for Problem 2.
We alter the solution to Problem 2 to simplify the

solution to Problem 1. Instead of breaking up maxi-
mal extended repetitions into valid repetitions, we break
them into all their valid overlapping squares. There are
no more than O(n log n) valid squares [19]. This can be
shown by an almost identical argument as Lemma 6.
To split maximal extended repetitions into their valid
overlapping squares, we process them one by one and
create a new square for each overlapping square in
the maximal extended repetition. We only need to per-
form this on maximal extended repetitions of expo-
nent e ≥ 3, and this will take time proportional
to the sum of the exponents which, by Lemma 7, is
O(n log n).
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To perform the filtering step, we must check if both
halves of the square are above the threshold 1/z. To
check each half, we compute, for each position i in an
extended factor, the length of the longest valid factor
starting at position i. During the generation of extended
factors for the threshold k, we at the same time determine
the longest factor with cumulative occurrence probabil-
ity greater than or equal to 1/z by computing an array
LF′ which stores the analogous information. Filtering the
squares in time proportional to their number can be done
by checking that the length stored in the array is greater
than or equal to the period of the square.
After the filtering step, we have a set of quadruples

(i, p, b, e) representing all primitive squares such that each
half of a square has cumulative occurrence probability at
least 1/z. Now, for every position i in x, we declare an
array Ai of linked lists, such that the linked list Ai

[
fi(j)

]
,

fi : [1, �n/2�] →
[
0,O

(
logφ n

)]
, stores all the squares

which occur at position i with period j ∈ [1, �n/2�]. We
now wish to establish the size of Ai and the size of the
linked lists stored at any Ai

[
fi(j)

]
.

Lemma 8. Ai is of size O
(
logφ n

)
, where φ =(

1 + √
5
)

/2, and the size of any linked list Ai
[
fi(j)

]
is

O(1).

Proof. There is a constant number of valid factors start-
ing from position i, and it is well known that a string can
contain no more than logφ n prefixes that are squares [19].
By Lemma 4, position i is only in O(1) extended factors.
The suffixes starting from i in each extended factor con-
tain no more than logφ n prefixes that are squares; this
achieves the first part of our claim. For the second part,
it is enough to note that each suffix of an extended factor
starting from i, which there is O(1) of, can only contain
one square of a given period.

We can now construct the repetitions specified in
Problem 1. For each position i, we iterate through the
linked lists of array Ai. We iterate through each linked list
Ai

[
fi(p)

]
, where p is the considered period. We process

each square element (i, p, b, e) ∈ Ai
[
fi(p)

]
to extend the

corresponding square as much as possible, by checking for
an occurrence of the square at position i + p. For a lin-
ear string, it is simple to determine this. For each pair of
overlapping squares, the second half of the first square is
the first half of the second square; so it suffices to check
whether there exists a square at position i + p with the
same period.

Example 5. Consider y = ababab that contains the fol-
lowing primitive squares: (0, 2, 2), (1, 2, 2), and (2, 2, 2); we
wish to find the repetition (0, 2, 3). We start at position 0

of y with (0, 2, 2) and check if there is a square of period
2 starting at position 2. A matching square exists so we
extend the repetition and check position 4. There is no
square at position 4 so we report the repetition (0, 2, 3).

For weighted strings the approach is very similar, with
the addition of a few, constant-time, checks. We must
check, for each pair of overlapping squares, if the black
positions from the first square match with the black posi-
tions from the second square. There is a constant number
of black positions so this takes constant time. Each time
we find such overlapping squares, we extend our repe-
tition and delete the square at position i + p from the
corresponding list. As soon as we find a position where we
cannot extend the repetition we stop. We continue doing
this until we have found all repetitions.

Example 6. Let x = aab [(a, 0.5)(b, 0.5)] [(a, 0.5)
(b, 0.5)]ab and 1/z = 1/4. We would like to report repe-
tition v = ababab, defined by (1, 2 {∅}, 3). For i = 1, we
iterate through the linked lists of array A1. For p = 2, we
iterate through the linked list A1

[
f1(2)

]
. We find the square

abab, defined by (1, 2 {∅}, 3). We check for an occurrence
of the same square at position i + p = 1 + 2 = 3, and find
(3, 2, {(0, a), (1, b)}, 2) in A3

[
f3(2)

]
. We have to check if the

black positions from the first square match with the black
positions from the second square. They do, so we extend
our square to repetition ababab, defined by (1, 2 {∅}, 3),
and delete the square at position i + p = 3 from the list
A3

[
f3(2)

]
.

Each time we iterate through a linked list, a square may
be added to the repetition we are extending; this takes
constant time per list by Lemma 8. After each square is
added to the repetition, it is deleted so is not consid-
ered again. There are O(n log n) squares in the array and
from the above description we can see that each square
is considered a constant number of times. It is clear that
we construct no more repetitions than there are primi-
tive squares, so the number of constructed repetitions is
also O(n log n). These repetitions will be maximal, and to
report repetitions specified in Problem 1, we may check
the start of each occurrence in the repetition and report
them. This takes no more than the sum of exponents
which is O(n log n). We can now state the main result of
this article.

Theorem 2. Problem 1 can be solved in optimal time
O(n log n).

Conclusions
In this article, we presented an optimal algorithm for
computing all tandem repeats in weighted sequences.
We improved on the time complexity of the best-known
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algorithm for computing all tandem repeats in weighted
sequences from O

(
n2

)
to an optimal O(n log n), and

showed that Crochemore’s partitioning scheme can be
used efficiently in weighted sequences.
A most obvious drawback of the proposed algorithm

is the hidden constant due to the generation of extended
factors. This constant appears throughout the work. The
high constant factor in the other operations is due to
them being performed on extended factors—not due to an
inherently large constant in the operation itself. It should
also be noted that the existing algorithms for the compu-
tation of repetitions in weighted strings also suffer from
this problem. All the algorithmsmake the assumption that
the cumulative weight threshold is constant and gener-
ate the valid factors in one way or another, pruning out
those that violate the threshold to avoid a combinatorial
explosion. This exponential dependency is explicitly men-
tioned in [20], where an exponential constant is derived,
and also in [16]. The difference between our approach and
that of [16] is that we also improve the complexity from
O

(
n2

)
to the optimalO(n log n).

For future work, we intend on devising an algorithm to
compute a most compact representation of all maximal
repetitions in weighted strings similar to the one for regu-
lar strings [2]. It seems as though the techniques we have
developed here are not directly applicable to this compu-
tation. Perhaps new methods will need to be developed to
achieve a linear-time computation.
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