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Abstract

Background: Chromosome structure is closely related to its function and Chromosome Conformation Capture (3C)
is a widely used technique for exploring spatial properties of chromosomes. 3C interaction frequencies are usually
associated with spatial distances. However, the raw data from 3C experiments is an aggregation of interactions from
many cells, and the spatial distances of any given interaction are uncertain.

Results: We introduce a new method for filtering 3C interactions that selects subsets of interactions that obey metric
constraints of various strictness. We demonstrate that, although the problem is computationally hard, near-optimal
results are often attainable in practice using well-designed heuristics and approximation algorithms. Further, we show
that, compared with a standard technique, this metric filtering approach leads to (a) subgraphs with higher statistical
significance, (b) lower embedding error, (c) lower sensitivity to initial conditions of the embedding algorithm, and (d)
structures with better agreement with light microscopy measurements. Our filtering scheme is applicable for a strict
frequency-to-distance mapping and a more relaxed mapping from frequency to a range of distances.

Conclusions: Our filtering method for 3C data considers both metric consistency and statistical confidence
simultaneously resulting in lower-error embeddings that are biologically more plausible.
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Background
Chromosome conformation capture (3C) is an experi-
mental technique designed to observe how the genome
folds in a cell [1]. Measurements from 3C experiments
have been used to construct three-dimensional models of
chromosomes at a higher resolution than what is possible
with light microscopy [2], and these models are correlated
with long-range regulation [3], chromatin accessibility [4],
as well as cancer-related genome alterations [5]. Since
its introduction, the 3C technique has become widely
adopted and has been applied to bacterial, yeast, fruit fly,
and human genomes [3,6-13].
Measured interactions between genomic locations are

aggregated into a chromosome conformation graph. The
frequency of an interaction between a particular pair of
genomic locations in the assayed population of cells can be
converted to a distance, and this mapping allows the graph
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to be embedded in three dimensions. Before embedding,
interactions in 3C graphs are usually filtered so that only
interactions with unusually high frequencies given their
genomic distance are kept. For example, contact matrices
normalize the observed frequency of an interaction within
a chromosome by the expected frequency within an entire
genome (e.g. [4,14]) while others more explicitly model
the distribution of interaction frequencies (e.g. [3,6]). In
this sense, traditional statistical filtering methods retain
high-confidence interactions.
However, because 3C measurements are aggregated

over millions of cells, the distances associated with these
high-confidence interactions are often metrically incon-
sistent. For example, among 2,257,241,015 triplets of mea-
surements that form triangles in the yeast 3C data of
Duan et al. [6], 679,480,886 (30%) do not satisfy the tri-
angle inequality. These inconsistencies make it difficult to
reason about conformational properties of the genome.
Further, existing filtering procedures do not use relation-
ships between the edges to, for example, discard high-
confidence edges that are apparently inconsistent with
many lower-confidence edges, or to include seemingly
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low-confidence edges that are nonetheless consistent with
many others.
To address these shortcomings, we introduce the idea

of metric filtering where we seek a high-confidence met-
rically consistent subset of the 3C graph. We frame the
procedure as a family of optimization problems where we
want to find a subgraph of high total weight (confidence)
such that the set of chosen edges satisfies metric con-
straints of various stringency. We show that this family of
problems, like embeddability in R

3 [15], is NP-hard, and
provide four algorithms for the approximate solution of
the least and most stringent versions.
We apply the metric filtering algorithms to 4Cmeasure-

ments for budding yeast [6] and show that the heuristics
are able to find near-optimal solutions to the variant of
the problem where only triangles are consistent. Despite
the additional metric constraints, the selected set of edges
is often of higher total confidence than the data set con-
sidered in Duan et al. [6] that had an estimated 1% false
discovery rate (FDR).
We show that embeddings based on these filterings have

lower embedding error than those based on an existing
filtering technique [6]. The structures also exhibit lower
variation when different initial conditions are chosen for
a previously proposed non-linear optimization embed-
ding technique. Finally, we provide anecdotal evidence
that the structure resulting from the metrically filtered
interactions is in better agreement with known biology
than the structure derived using standard filtering tech-
niques. The improved agreement is a result of the metric
filtering being able to include longer-distance, but lower-
confidence, interactions.

Problem definition
Problem 1 (Consistent-k-Paths). Given an inte-

ger k ≥ 2, and a graph G = (V ,E), where each edge
e ∈ E is associated with a non-negative length d(e) and
a positive reward r(e), find a subset S ⊆ E of edges that
maximizes R(S) = ∑

e∈S r(e) and such that, for all e ∈ S
and for any path Pke in G of k or fewer edges in S joining
the endpoints of e, the following condition holds:

∑

e′∈Pke
d(e′) ≥ d(e). (1)

In other words, we seek the highest total reward sub-
graph where the length of every chosen edge is shorter
than any path of k or fewer hops joining the endpoints of
that edge. If an edge satisfies condition (1) for a given k, we
say it is k-consistent, or simply consistent if k is clear from
the context. If the edge is not consistent, it is violated.
Consistent-k-Paths is a family of problems

parameterized by k. The value of k allows the strictness
of the metric condition to be varied. To obtain an idea as

to how relatively stringent the filterings are, we focus on
the two extreme cases of k = 2 and k = |V | − 1. The
strictest condition is k = |V | − 1, when every alternative
path must be at least as long as the direct edge connecting
the endpoints of the path, while themost lenient condition
is k = 2, where consistency is only enforced for triangles.
Because of their importance, we give names to these two
special cases.

Definition 1 (ConsT). ConsT is an instance of Con-
sistent-k-Paths with k = 2, i.e. every triangle must
satisfy inequality (1).

Definition 2 (ConsP). ConsP is an instance of Con-
sistent-k-Paths with k = |V | − 1 implying that all
paths are consistent.

The ConsT formulation (and any formulation with k <

|V | − 1) is motivated by the fact that each measured dis-
tance is associated with some uncertainty that propagates
when summing distances over longer paths. The ConsP
property is more strict, requiring all paths to be con-
sistent, but it suffers from the propogation of errors as
distances are summed over large paths.

NP-Hardness of Consistent-k-Paths
Theorem 1. Consistent-k-Paths is NP-hard for

k > 1.

Proof. Reduction from Independent Set: given � ∈
Z≥0 and a graph G = (V ,E), construct a graph H = (V ∪
{u},E ∪ E′) as follows. Let d(e) = r(e) = 3 for all e ∈ E.
Create a new vertex u, and a new set of edges E′ = {{u, v} |
v ∈ V }. Set d(e) = r(e) = 1 for all e ∈ E′. We show that G
has an independent set of size ≥ � ⇐⇒ H has a solution
of total reward R ≥ 3|E| + �. Note that a violating path in
H contains exactly 2 edges and, along with the violated
edge, forms a triangle. This is because every edge inH has
d ≥ 1, so that every path containing 3 or more edges will
have a total d ≥ 3. Such a path is as long as any edge
in H, and hence can violate no edge. It follows that this
reduction applies for all k ≥ 2.

=⇒ Let S ⊆ V be an independent set of size ≥ �.
Choose all edges of E and the edges ES = {{u,w} | w ∈ S}.
The total reward of this set is R = 3|E| + |S| ≥ 3|E| + �.
Since all of the edges in E have d = 3, all 2-hop paths
formed by these edges have d = 6 and do not violate
eq. (1). Further, since S is an independent set, no triangle
involving u is selected. Therefore, the graph induced by
the selected set of edges, E ∪ ES, is consistent.

⇐= Assume E∗ is a solution to the Consist-
ent-k-Paths problemwith R ≥ 3|E|+�. First, note that
no triangle {u,w}, {w, v}, {v,u} can be selected since this
would violate {v,w} because d(v,u) + d(u,w) < d(v,w).
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Due to the following argument, we assume, without loss of
generality, that all edges ofG are chosen: Suppose a pair of
edges {u,v} and {u,w} was chosen and edge {v,w} exists in
E but was not chosen. Then we can remove {u,v} and add
{v,w}. This is still a solution with reward ≥ 3|E| + �, since
the swap only increases the value of the solution. Repeated
application of this will produce a solution of cost≥ 3|E|+�

that includes all of E.
In the transformed solution, the edges of E contribute

a reward of 3|E|. Further, to avoid violating edges, the
endpoints of selected edges adjacent to u must form an
independent set, and to achieve a total reward R ≥ 3|E| +
�, there must have been an independent set size ≥ �.

Corollary 1. Consistent-k-Paths restricted to
r(e) = 1 for all e ∈ E is NP-hard for k > 1.

Proof. Apply the same reduction as above, except that
r(e) = 1 instead of 3 for all e ∈ E, and using a total
reward threshold of E∗ ≥ |E| + � instead of 3|E| + �. In
the new formulation, E∗ might include two edges {u,w}
and {u, v} without picking {v,w} ∈ E if it exists. How-
ever, any such solution can be transformed into one of
the form above with equal cost by removing {u,w} and
adding {v,w}. This neither changes the number of edges
nor decreases the total reward of E∗, and the proof can
proceed as in Theorem 1.

Algorithms
Since ConsT and ConsP are NP-hard, it is unlikely that
there exist algorithms that solve these problems in polyno-
mial time. Thus, we have developed several approximation
algorithms and heuristics to tackle them in practice. We
present five algorithms below; the first three apply to the
ConsT problem while the latter two apply to the ConsP
problem.

A set-cover-based algorithm
We formulate ConsT as a minimum weight set cover
problem by removing the lowest weight set of edges that
restores consistency, and therefore maximizes the weight
of the remaining graph (the complement of the origi-
nal problem). Let �̄ be the set of violated triangles in
G (where a triangle is violated if it does not obey the
triangle inequality). For edge {u, v} in E, let Suv be the
subset of triangles in �̄ that contain {u, v}, and let C =
{Suv for all {u, v} ∈ E}. Define the cost c(Suv) = r({u, v}).
We then seek the smallest weight collection of sets Suv
that cover all the violated triangles �̄, a direct application
of minimum-weight set cover. Removing the edges cor-
responding to each chosen subset Suv will resolve all of
the violated triangles. This problem can be approximated
using either an LP relaxation or a greedy algorithm [16].
Note that, since each violated triangle belongs to at most

3 sets of the collection C, there is an algorithm that finds a
solution to this SET-COVER instance with a cost no more
than 3 times OPT [16]. For the experiments described
here, we use the greedy algorithm. There exist exact algo-
rithms for the related hitting set problem [17], but these
are only efficient when the number of edges that need to
be removed is small, which is not what we observe in the
3C data we analyze.

A hierarchical maximum cut approach
Another approach to solve ConsT uses a solution to the
MAX-CUT problem to find a maximum weight (i.e. max-
imum total reward) cut-set E′ separating vertices of G
into V1 and V2. Because E′ is bipartite, it will have no
triangles, and thus, no violated triangles. The LOCAL-
CUT algorithm [18] guarantees that E′ has at least 1/2
the total reward of G. Therefore, this algorithm is a 1/2-
approximation to ConsT. We add all edges in E′ to the
growing solution set E∗. Then, for every pair of edges
{u, v}, {u,w} in E′, if there is an edge {v,w} ∈ E \ E′ that
forms a violated triangle, we remove {v,w} from G, and
we recursively apply this procedure to the two partitions
induced by the maximum cut. Because the subgraphs
induced by V1 and V2 only contain the set of edges that
form non-violating triangles with the edges in E′, the
constructed solution contains no triangle violations.

Integer linear program
The ConsT problem can be expressed succinctly as an
integer linear program (ILP), mirroring a standard ILP for
set cover:

maximize
∑

e∈E
xer(e) (2)

subj. to xe1 + xe2 + xe3 ≤ 2 for {e1, e2, e3} ∈ �̄

xe ∈ {0, 1} (3)

where �̄ are the set of metrically inconsistent triangles
in G. Of course, (2) is computationally difficult to solve.
However, by relaxing the condition in eq. (3) to 0 ≤
xe ≤ 1, we obtain a linear program which can be solved
efficiently and whose objective provides an upper bound
on total confidence of the optimal metrically consistent
solution.

Taking the union of shortest paths
Let Puv be the set of edges in all shortest paths (according
to d) going from node u to node v inG = (V ,E). A feasible
solution to ConsP is to take the edges in

⋃
{u,v}∈E Puv. We

call this the SP-UNION heuristic. The intuition behind it
is that, by definition, no edge that is part of some shortest
path in G can be violated. Assume such an edge {u, v} was
violated. Then, there must exist some path p between u
and v with d(p) < d(u, v). However, this contradicts the
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fact that {u, v} belongs to some shortest path, because we
could replace {u, v} with p and shorten this path.
Unfortunately, there may be an exponential number of

shortest paths in G. However, by removing from E all
edges that are not part of some shortest path, we can
obtain the desired set of edges without explicitly enu-
merating all shortest paths. The SP-UNION heuristic first
computes, for every edge {u, v} ∈ E, the length of the
shortest path between its endpoints, d(spu,v). Then, the
solution is simply given by E∗ = E\{{u, v} ∈ E | d(spu,v) <

d(u, v)}.

Maximum spanning tree heuristic
The final heuristic, MST-ADD, first constructs a
maximum-reward spanning tree T = (V ,ET ) on
G = (V ,E) and adds its edges to E∗. This can be com-
puted using any standard maximum-weight spanning tree
algorithm. By construction, T has a high total reward.
Since it is a tree, it contains no cycles, and hence no
violations. We sort the remaining edges E \ ET by their
reward and, iterating through them in descending order,
add them to E∗ if they do not violate any shortest paths in
the growing E∗.

Metric filtering with uncertain distances
In ConsT and ConsP, we assume that every observed fre-
quency f (e) maps to a single spatial distance. However, it
is more plausible that an observed frequency maps to a
range of distances. In this case, we suppose that there is
a range of distances [ l(e),u(e)] where l(e) and u(e) repre-
sent the lower and upper bounds of all valid distances to
which the frequency f (e) of edge e can map.
Given such a range for every edge e, the new con-

dition for metric consistency (previously inequality (1))
becomes:

∑

e′∈Pke
u(e′) ≥ l(e). (4)

This allows distances assigned to the edges to be “flex-
ible,” and they can be extended or contracted within the
range’s bounds to satisfy the new metric consistency con-
dition (4). An edge e is violated only if, for some path of
k or fewer hops connecting the endpoints of e, the sum of
the upper bounds of the distances for edges e′ in this path
is less than the lower bound of the distance range for e.
All of our algorithms can be modified in a straighfor-

ward way to use this relaxed definition of metric consis-
tency. Now, the SET-COVER algorithm need only cover
triangles that are violated according to (4). In the MAX-
CUT algorithm, we need only remove edges from the
left and right bipartition that form triangles involving cut
edges that are violated under the new definition. When
computing the set of shortest paths (SP-UNION) and the

maximum-reward spanning tree (MST-ADD), the short-
est path lengths are now computed using u(e′) and, to test
whether any edge e is violated, these lengths are compared
to l(e).

Computational results
Weights for 3C interactions in budding yeast
We use the measurements from Duan et al. [6], who used
a 3C variant called 4C to assay interactions for the entire
S. cerevisiae genome during interphase with two exper-
iments based on the HindIII MseI and MspI restriction
enzymes. In total, Duan et al. measured 4, 097, 539 inter-
actions across 4, 193 genome fragments (nodes). Each
of these interactions e is associated with a frequency
f (e) — the number of times it was observed. Duan et
al. process these raw frequency counts to derive several
other measures for each interaction. A spatial distance
d(e), which we use as the edge length in condition (1),
is assigned to every interaction using a frequency-to-
distance mapping based on the observed inverse rela-
tionship between genomic separation and frequency for
intra-chromosomal interactions. Such a distance mapping
is common to most approaches that seek embeddings of
3C data [3,6,10,19]. Because the distancemapping is based
on intra-chromosomal interactions, we have more confi-
dence in the spatial distances d(e) for interactions within
a chromosome. Therefore, in most of the experiments
below, we consider each chromosome individually. Table 1
gives the sizes of the graphs for each chromosome of yeast.

Table 1 Sizes of yeast chromosome conformation graphs

Chr |V| |E|
1 54 1046

2 311 31600

3 100 3738

4 521 86126

5 184 11243

6 92 3050

7 404 52224

8 192 13226

9 149 7738

10 257 2234

11 253 20232

12 361 38052

13 331 36792

14 283 26531

15 368 43807

16 333 37054

|V| is the number of interaction fragments per chromosome, and |E| is the
number of intra-chromosomal edges.
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Duan et al. also compute a p-value for every e.
Using these p-values, they further derive a “q-value”
that accounts for multiple hypothesis testing caused by
the large number of edges sampled. See the “Computa-
tional methods” of the supplementary material of Duan
et al. for a description of how the q-values are com-
puted. We reproduced their p-value and q-value com-
putations and use r(e) = 1 − q(e) as the reward for
including an edge in the solution in condition (1). The
value 1 − q(e) is a measure of confidence: high val-
ues indicate low p-values, which indicate that interac-
tions occur with a frequency that one would not expect
by chance.
The input to the filtering procedures is thus the graph

G = (V ,E) where V is a set of restriction fragments and
E is the set of interactions. The distance on an edge e is
d(e) and the reward on an edge is the confidence r(e).
The goal of metric filtering is to find a subgraph with high
confidence (i.e. generally low p-values) with no metric
violations as defined by condition (1).

Ability of the algorithms to find high-weight subgraphs
The heuristics of the Algorithms section were tested on
each of the 16 yeast chromosomes, and Figure 1 sum-
marizes the algorithms’ ability to find high-confidence
solutions. In 15 out of 16 cases, MAX-CUT finds a ConsT
subgraph with the largest total confidence (Figure 1, green

triangles). However, in all 16 chromosomes, the SET-
COVER method finds a graph of nearly the same quality,
indicating that this method is competitive in terms of its
ability to optimize the objective function.
The ConsT subgraphs have similar—and usually

higher—total confidence than FDR 1% while eliminating
all violated triangles (compare black circles with green tri-
angles and red squares in Figure 1). The set of interactions
at FDR at 100q′% is the set of edges originally considered
by Duan et al. with q < q′. Both SET-COVER and MAX-
CUT achieve total confidence that is higher than the Duan
et al. FDR 1% filtering for all but the smallest chromo-
somes (1, 3, and 6). Even in those cases, SET-COVER and
MAX-CUT solutions are no more than 25% away from the
FDR 1% total confidence.
Due to the NP-hardness of the problems, optimal solu-

tions for ConsT and ConsP are difficult to obtain. How-
ever, the ConsT problem can be expressed as an integer
linear program (2). While this ILP is also difficult to solve,
its linear relaxation is solvable in practice and provides a
provable upper bound on the value of the optimal solu-
tion, shown as blue diamonds in Figure 1. This bound
reveals that the SET-COVER and MAX-CUT approaches
find solutions that are close to optimal. Experiments on
all chromosomes achieve total confidence values that are
at least 70% of the linear program upper bound, and four
cases achieve total confidence of around 90% of the upper
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Figure 1Metric filtering performance on various chromosomes of yeast. The total confidence that each algorithm recovers normalized by the
total number of edges is plotted. Higher values are better. The objective value of the linear program (blue diamonds) gives an upper bound for both
the ConsT and ConsP solutions. We also compare our algorithms to the Duan et al. filtering method at FDR 1% (black circles) which is their largest
and highest-confidence filtered interaction set. (A bug in the SP-UNION script in the conference version of this paper [20] erroneously led to plotting
the sum of edge q-values instead of the sum of confidence. The plots have been updated to correctly plot total confidence with little qualitative
difference).
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bound. Since the LP overestimates the optimal value, it is
likely that the heuristics provide solutions that are much
closer than 70% of the true optimal solution.
The algorithms for ConsP (MST-ADD and SP-UNION)

find graphs with far fewer edges and far lower total con-
fidence than any of the solutions for ConsT (Figure 1),
and they sacrifice a significant proportion of the total con-
fidence to obtain a completely metric subgraph. This is
a strong indication of how much more strict the ConsP
condition is compared with ConsT. In addition, the SP-
UNION algorithm performed worse then MST-ADD. The
severe condition required by ConsP is likely too strict for
the noisy 3C data, and ConsT provides a more reasonable
trade-off between avoiding metric violations and keeping
a useful fraction of the interactions.

Metric filtering produces lower-error embeddings
The ConsT and ConsP filterings both result in lower-
error embeddings than their associated confidence-
ranked filterings when embedded using a nonlinear opti-
mization technique. To control for the size of filterings
we compare a metric filtering with m interactions to an
associated set of the m highest confidence interactions
(C-RANK). The embedding attempts to place nodes to
minimize the sum-squared error of

∑
e∈E′(o(e) − d(e))2

between the original d(e) and the embedded o(e) dis-
tance. The SET-COVER filtering of chromosome 1 resulted
in a mean sum-squared error of 0.97 across 10 embed-
dings while C-RANK resulted in an error of 1.58. Similarly,
MST-ADD had an average error of 0.067 while C-RANK
produced an error of 0.39. Our improved performance
may be due to the fact that metric violations result in
distance contradictions that cannot be resolved by the
optimization procedure.
To confirm the hypothesis that metric violations cause

increased errors in the embeddings, we systematically re-
introduced violated triangles using the following proce-
dure. We choose a triangle {u, v,w} at random. If d(u, v) <

d(u,w), then we set d(u, v) = α|d(v,w) − d(u,w)|. Oth-
erwise, we set d(u,w) = α|d(v,w) − d(u, v)|, for some
choice of 0 < α < 1. As the percentage of vio-
lated triangles increased, the embedding error increased
as well with 1.2, 1.4, 1.6, 2.0, 2.3, 2.8 average error for

10, 20, 30, 40, 50, 60% violated triangles respectively with
α = 0.9. Metric filtering therefore has the desirable prop-
erty of removing the embedding error that results from
the existence of violated triangles.

Metric filtering produces low-variance, more biologically
plausible embeddings
We embedded the various sets of filtered constraints for
the chromosomes using an establishednon-linear optimiza-
tion technique [6,9] that incorporates chromatin packing
constraints consistent with known biology in yeast. We
obtained ensembles of structures by providing random
initial conditions for our implementation of this optimiza-
tion, a technique previously used to study conformational
differences between cancer and healthy genomes [3].
Ensembles of 10 embeddings for SET-COVER on chro-

mosome 1 are shown in Figure 2a and the ensembles
for a non-metric filtering with equal number of edges
(obtained by taking the corresponding number of edges
with the highest confidence) are in Figure 2b. We focus on
observations for chromosome 1, but have observed simi-
lar trends for other chromosomes. For each filtering, the
embeddings are aligned to each other using a maximum
likelihood superpositioning technique [21].

Lower-variance embeddings
Both ConsT (Figure 2) and ConsP filterings produce
ensembles of embeddings that are more homogeneous
than those from the associated C-RANK sets as indi-
cated by the superposition of structures in Figure 2. We
can quantify the variance of an ensemble by computing
the sum of the branch lengths of a minimum spanning
tree of a complete graph where the nodes represent the
embedded structures and the edge weights are the RMSD
between the alignments of pairs of structures. The min-
imum spanning tree on this graph represents a parsimo-
nious way to describe the variability among embedded
structures. The MST-based variability between the SET-
COVER and MST-ADD embeddings of chromosome 1 are
0.17 and 0.0093 respectively while the MST variability of
the associated C-RANK embeddings are much larger, at
0.26 and 0.32 respectively.

Figure 2 Filtered graphs embedded in 3D. Superposition of 10 embeddings for both ConsT and C-RANK filterings. (a) SET-COVER. (b) C-RANK of
the same size as the SET-COVER. (c) SET-COVER after removing ≈ 20% of the lowest-confidence edges.
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Low variance among the embeddings of metric sub-
graphs indicates that selecting edges for their metric
consistency allows fewer highly different solutions to be
found. This is desirable, because we do not want embed-
dings to be sensitive to the initial conditions of the opti-
mization procedure. Further, because they were taken
from a population of cells, the 3C measurements are in
fact taken from an ensemble of structures. The large vari-
ance among C-RANK edges may reflect this fact. In con-
trast, the metric filtering appears to be selecting subsets of
constraints that could plausibly represent a single struc-
ture. Hence, metric filtering may be one way to partially
deconvolve the population-averaged measurements.

Biologically plausible embeddings
The ConsT embeddings result in telomere distances that
match known microscopy distances better than the asso-
ciated C-RANK set. A recent experiment [22] establishes
that the distance between the telomeres of chromosome 1
in budding yeast are often about 1μm. The embeddings of
C-RANK in Figure 2b have an average distance of 0.45μm
while the embeddings of SET-COVER (Figure 2a) have an
average distance of 0.96μm, which is a much better match
to the experimentally observed value.
Despite having edge sets of the same or larger total con-

fidence, the metric filtering produces very different struc-
tures than the C-RANK filtering. However, removing the
71 lowest-confidence edges from the ConsT embedding
does result in a structure similar to the C-RANK filter-
ings Figure 2c. Thus, it seems these lower-confidence, but
metrically-consistent, interactions are crucial to obtaining
the more distended structures that are more consistent
with microscopy experiments.

Analysis of the types of edges kept by metric filtering
For all chromosomes, both ConsP and ConsT keep more
low-confidence edges than the C-RANK filtering (ConsT
shown in Figure 3a). Although, in general, more low-
confidence edges are kept, the ConsT filtering of chro-
mosome 1 preserves overall higher distance interactions
than the associated C-RANK filtering with amean distance
of 0.55 while the C-RANK filtering has a mean distance
of 0.25 (all distances in μm). Of these interactions, the
high-confidence ones in the ConsT filtering (i.e. those
above 0.8) have a mean distance of 0.31 while the C-
RANK filtering has a mean distance of 0.25. This is due
to the fact that the interactions in the C-RANK filter-
ing are concentrated in a small region of chromosome 1,
while the SET-COVER filtering distributes the interactions
across the entire chromosome: for the interactions in the
C-RANK set, but not in the ConsT filtering, 76 out of the
131 interactions lie between positions 75881 and 130646
of chromosome 1 while the densest region of similar size
in the SET-COVER filtering has only 26 interactions. The

preservation of larger-distance, higher-confidence inter-
actions in the ConsT filtering is likely what results in the
expanded structure where telomere distances are more
in line with microscopy experiments. For the ConsP
embedding, however, the large disparity in mean distance
of interactions (C-RANK: 0.165, MST-ADD: 1.69) is due
mostly to low-confidence edges. This creates an undesir-
able structure that contains very little useful information
about long-range interactions. This is another indication
that the strictness of the ConsP filtering may be too
severe compared with the more relaxed and biologically
plausible ConsT approach. The inclusion of long-range
interactions resulting from lower-confidence edges repre-
sent some of the most interesting and desired informa-
tion obtained from 3C experiments. C-RANK necessarily
ignores many of these long-range constraints, while the
metric filtering allows the inclusion of both metrically
consistent and higher-confidence constraints.
In addition, the ConsT method generally keeps inter-

actions with larger genomic distances than C-RANK. The
average genomic distance of C-RANK is 243.5 kilobases
while the average genomic distance of SET-COVER is 285.0
kilobases (Figure 3b). Surprisingly, while ConsP keeps
more low-frequency interactions, these tend to be at
shorter genomic distances.

Various heuristics result in very different sets of edges
Although the MAX-CUT and SET-COVER algorithms aim
to optimize the same objective and find subgraphs of
approximately the same total weight, they result in very
different edge sets (Figure 4). Further, their intersections
with the most confident edges are also different: of the
219, 483 edges returned by MAX-CUT, 53% are among
the top 219, 483 most confident edges, while 60% of the
86, 866 edges returned by SET-COVER are among themost
confident edges (Table 2). The differing number of edges
in solutions with similar total confidence also indicates
that the edges in the MAX-CUT solution are of lower
average confidence.
The structure of the graphs returned by MAX-CUT is

also very different than that of those returned by SET-
COVER. The MAX-CUT solution has very few triangles.
For example, on chromosome 1 MAX-CUT retains only
27 out of the original 10091 triangles while SET-COVER
keeps 495. This difference is somewhat intuitive since
SET-COVER is explicitly trying to throw away few trian-
gles while MAX-CUT is explicitly looking for triangle-free
(i.e. bipartite) subgraphs. For fewer, higher-weight edges
with many triangles the SET-COVER should be preferred.
This is likely the scenario that is most applicable to 3C
chromosome embedding. Because optimal solutions can-
not be found for large instances, it is unclear at this point
whether the large variation in the returned edge sets is
due to the objective function admitting many solutions or
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a b

Figure 3 Histogram of genomic distances and interaction confidences between C-Rank and ConsT. Distances and confidences for both
filtering methods were computed on the intra-chromosomal interactions. (a) The ConsT filtering kept more low-confidence edges than C-Rank
(“FDR Filter” in the legend). (b) The ConsT filtering kept interactions with larger genomic distances than C-Rank..

whether, if optimal solutions could be found, they would
all be similar.
The two algorithms designed for ConsP also result in

very different graphs, but this is primarily because the
MST-ADD algorithm is far more successful at finding a
good solution than the SP-UNION approach. The two
algorithms had similar intersections with the top-most
confident edges: for MST-ADD, 46% of the edges were
among the top-most confident edges, while for SP-UNION
the fraction was 41%.

Performance under uncertain distances
In the experiments conducted here, we set l(e) = (1 −
ρ)d(e) and u(e) = (1 + ρ)d(e), 0 ≤ ρ ≤ 1. Here,

Figure 4 Intersections amongmetric edge sets.

d(e) denotes the distance corresponding to f (e) using the
original frequency-to-distance mapping. The parameter
ρ determines the size of the distance range to consider.
When ρ is set to 0, no flexibility is allowed and condi-
tion (4) reduces to condition (1); when ρ is set to 1, the
lower bound for the distance of an edge e goes to 0, allow-
ing all edges to satisfy condition (4). Therefore, with ρ = 1
no edges will be removed by the filtering. We system-
atically sample ρ in the range of 0 to 1 in increments
of 0.01.
Using distance ranges l(e),u(e), we compute the total

confidence included in the filtered graph as a function of
the slack factor ρ (Figure 5). The total confidence for chro-
mosome 1 gradually increases as a function of ρ and there
is no ρ for which there is a sudden jump in the total con-
fidence of the output graph. If some choice of ρ had lead
to significantly more total confidence, filtering with ranges
defined by that ρ would make sense if there was indepen-
dent evidence that the computed distances are uncertain
with that factor. Here, however, a small non-zero ρ does
not substantially increase the confidence of the result-
ing graph, indicating that there are not many inconsistent
edges that are on the cusp of metric consistency.
The linearly increasing total confidence observed in

Figure 5 is largely explained by the distribution of the

Table 2 Intersections with C-RANK sets of equal size

Algorithm Inter. with C-RANK

SET-COVER 51865

MAX-CUT 116049

MST-ADD 14210

SP-UNION 7345
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Figure 5 Total and normalized surprises of included edges vs. ρ.
Total confidences (top) and normalized confidences (bottom) of
included edges for different metric filtering algorithms on yeast
chromosome 1 dataset. Normalized confidence is the total
confidence divided by the number of edges in the output graph.

size of edge violations for edges included when ρ = 0
(Figure 6). In any given error bin, a large fraction of the
violated edges are corrected at ρ = 0, providing more evi-
dence that the algorithms generally perform well with a
strict distance mapping. We also observe that the edges

that are corrected by the metric filtering are not associ-
ated with any particular magnitude of error. For example,
even though most of the violating edges are low error,
they are not preferentially removed in the metric filter-
ing. Because of this, the histogram of errors that remain
to be resolved is more uniform in shape than the origi-
nal distribution of errors, and therefore we would expect,
as observed, a gradual increase in total confidence as
ρ increases.
Between the ConsP algorithms, MST-ADD obtains

higher total confidences for different values of ρ, while
SP-UNION obtains higher average confidence on the
edges in the output graph. In other words, SP-UNION
includes higher quality edges, and MST-ADD includes
more edges. A ρ of 0.34 is needed before MST-ADD
acheives the total confidence of SET-COVER with ρ = 0.
This provides more evidence that the ConsP condition is
too strict.
Interestingly, although MAX-CUT and SET-COVER per-

form similarly for low values of ρ, SET-COVER obtains the
highest total (and normalized) confidence under most val-
ues of ρ. The MAX-CUT method fails to include more
edges when the metric consistency condition is relaxed
because the cut it finds in the first pass is not affected by
the choice of ρ and this cut includes most of the edges
it will eventually keep. This resistance to the flexibility
provided by (4) is another reason that MAX-CUT is less
favorable than SET-COVER.
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Figure 6 Distribution of edge violation magnitudes. Histogram of d(u,w)−[ d(u, v) + d(v,w)] for all edges {u,w} in violating triangles in the
original graph (total bar height) and the number of these edges that are included in the filtered graph when ρ = 0 using the SET-COVER filtering
(yellow portion). The blue portion of the bar represents the number of edges that are filtered out when ρ = 0.
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Practical running times of the algorithms
When applied to the largest yeast chromosome (chromo-
some 4), the SET-COVER and MAX-CUT implementations
take 21 seconds and 21.5minutes to run respectively on an
Opteron 8431 processor. The SP-UNION and MST-ADD
methods take 2.25 minutes and < 2 days respectively.
The current implementation of MST-ADD re-computes
the shortest paths after every edge addition, and this could
be substantially sped up with a dynamic shortest-paths
method. The SET-COVER implementation is fast enough
to be run on the entire yeast genome, including inter-
chromosomal interactions, within 5 hours. In this case
the ConsT filtering results in a significantly different edge
set than the C-RANK embedding (the size of the intersec-
tion with C-RANK is only 350960 out of 657177 edges).
The SET-COVER algorithm also yields a relatively high
average confidence (0.88) when compared to the average
confidence from C-RANK (0.97).

Conclusions
We have provided evidence that a filtering scheme for 3C
data that uses both statistical confidence and metric con-
sistency as criteria produces sets of interactions that are
more embeddable, and creates more consistent and more
biologically plausible estimations for the 3D structures of
the chromosomes. We show that such filtering in general
is NP-hard, but by comparing to LP-based upper bounds,
we empirically demonstrate that both a set cover approach
and a hierarchical maximum cut algorithm produce nearly
optimal solutions avoiding any violated triangles. Finally,
we demonstrate that the methods can be extended in a
straightforward way to account for ranges of allowable
distances.
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