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Abstract

Background: Reconciliation methods compare gene trees and species trees to recover evolutionary events such as
duplications, transfers and losses explaining the history and composition of genomes. It is well-known that gene trees
inferred from molecular sequences can be partly erroneous due to incorrect sequence alignments as well as
phylogenetic reconstruction artifacts such as long branch attraction. In practice, this leads reconciliation methods to
overestimate the number of evolutionary events. Several methods have been proposed to circumvent this problem,
by collapsing the unsupported edges and then resolving the obtained multifurcating nodes, or by directly
rearranging the binary gene trees. Yet these methods have been defined for models of evolution accounting only for
duplications and losses, i.e. can not be applied to handle prokaryotic gene families.

Results: We propose a reconciliation method accounting for gene duplications, losses and horizontal transfers, that
specifically takes into account the uncertainties in gene trees by rearranging their weakly supported edges.
Rearrangements are performed on edges having a low confidence value, and are accepted whenever they improve
the reconciliation cost. We prove useful properties on the dynamic programming matrix used to compute
reconciliations, which allows to speed-up the tree space exploration when rearrangements are generated by Nearest
Neighbor Interchanges (NNI) edit operations. Experiments on synthetic data show that gene trees modified by such
NNI rearrangements are closer to the correct simulated trees and lead to better event predictions on average.
Experiments on real data demonstrate that the proposed method leads to a decrease in the reconciliation cost and
the number of inferred events. Finally on a dataset of 30 k gene families, this reconciliation method shows a ranking of
prokaryotic phyla by transfer rates identical to that proposed by a different approach dedicated to transfer detection
[BMCBIOINF 11:324, 2010, PNAS 109(13):4962–4967, 2012].

Conclusions: Prokaryotic gene trees can now be reconciled with their species phylogeny while accounting for the
uncertainty of the gene tree. More accurate and more precise reconciliations are obtained with respect to previous
parsimony algorithms not accounting for such uncertainties [LNCS 6398:93–108, 2010, BIOINF 28(12): i283–i291, 2012].
A software implementing the method is freely available at http://www.atgc-montpellier.fr/Mowgli/.
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Background
A phylogenetic tree or phylogeny is a tree depicting evo-
lutionary relationships among biological entities that are
believed to have a common ancestor. A gene family is a
group of genes descending from a common ancestor, that
retains similar sequences and often similar functions [1].
A species tree depicts the evolutionary history of a group
of species, whereas a gene tree depicts the evolution-
ary history of a gene family. Gene trees often differ from
the species tree due to family-specific evolutionary events
such as gene duplications, gene losses and horizontal gene
transfers. By comparing a gene tree with the species tree,
reconciliation methods try to recover those major evo-
lutionary events. Reconciliation is indeed the process of
constructing a mapping between a gene tree and a species
tree to explain their differences and similitudes with evo-
lutionary events such as speciation (S), duplication (D),
loss (L), and horizontal gene transfer (T) events. Reconcil-
iations are most often inferred on the basis of a parsimony
criterion: a cost is given to each event type, the total cost
of a reconciliation is the sum of the costs of the individual
events it uses, and a reconciliation of minimum total cost
is sought for. This computational problem is often called
Most Parsimonious Reconciliation, or MPR in short, and
many works have been devoted to it recently [2-8].
The first proposed models focused on parsimonious

reconciliations involving only duplications and losses (the
DL model) [9-11] or only horizontal transfers and losses
[12]. Probabilistic methods have also been developed for
the DL model, such as that of Arvestad et al. [13] (see
Doyon et al. [14] for a review). Most recent works using a
parsimony approach have been devoted to models incor-
porating duplications, losses and transfers all together
(the DTL model) [2,4,5,8], which is necessary to han-
dle prokaryotes. When accounting for transfer events,
the history proposed by a reconciliation is consistent if,
for any transfer, the donor and receiver species co-exist.
Ensuring such a time consistency is difficult and leads to
an NP-hard problem in the general case [7,15] which can-
not be solved by just examining couples of species tree
edges. However, in the case divergence dates are avail-
able for nodes of the species tree, the problem becomes
amenable [2,16]. The difficulty to handle transfers has
led to a split within proposed DTL methods, namely
those that ensure time-consistency [2,16] and those that
do not [3,4,7]. The fastest parsimony algorithms for the
later category runs in O(mn log n) where m and n are the
sizes of the gene and species trees respectively [3], while
the fastest time-consistent algorithm runs in O(mn2) [2].
Probabilistic methods also have been extended recently
to the DTL model. Inspired by the work of Tofigh [17],
Szőllösi et al. recently proposed a time-consistent proce-
dure to estimate the species tree by reconciliations from a
set of gene trees [18].

A major problem, when applying reconciliation meth-
ods, is that parts of the gene trees can be incorrect. This
leads reconciliation methods to overestimate (S), (D), (L)
and (T) events [19,20]. Errors within a binary gene tree
can be due to sequence alignment problems, phylogenetic
reconstruction artifacts (e.g. long branch attraction) or a
lack of phylogenetic signal (especially for genes encoded
by short sequences). Such phenomena are well-known in
phylogenetics and several supportmeasures, such as boot-
strap values or bayesian posterior probabilities, have been
proposed to detect unreliable edges in a gene tree. Up
to now, very few works have tackled the reconciliation
problem in the presence of unsupported edges, and most
of them consider only the DL model [19,21-26]. Durand
et al. proposed an exponential exact algorithm to find
the best rearrangement of a gene tree while preserving
its strongly supported edges [19]. Another approach is to
collapse unsupported edges, thereby creating nodes with
more than two children (i.e., polytomies), and then to rely
on a generalization of the least common ancestor map-
ping (LCA) to avoid the need for examining all possible
binary rearrangements of the polytomies [21-23,26]. In
this way, Chang et al. and Lafond et al. proposed poly-
nomial time algorithms to solve the MPR problem for a
binary species tree and a non-binary gene tree [22,26].
When both the species tree and the gene tree are non-
binary, Berglund et al. proved that finding a refinement of
the gene tree using less than a given number of duplica-
tions is an NP-complete problem [21]. They also proposed
a heuristic approach to refine the gene tree by first mini-
mizing duplications and then losses. Zheng et al. showed
that minimizing together duplication and loss costs is
NP-hard for reconciling a non-binary species tree with
a binary gene tree [25]. For this specific case, Vernot
et al. proposed a fixed parameter tractable (FPT) algo-
rithm whose complexity is exponential only in the max-
imum degree of nodes [23]. More recently, Stolzer et al.
extended this FPT algorithm by allowing transfers [27].
Overall, several works relied on tree edit operations to

deal with uncertainties in the gene trees. Durand et al.
used Nearest Neighbor Interchange (NNI) edit operations
to rearrange the local topology of the gene trees in the
regions of low supports [19]. Górecki and Eulenstein pro-
posed an efficient algorithm to do a similar task and at
the same time root the gene trees, while restraining their
search to trees that are at most k NNI moves away from
the original gene trees [28]. Chaudhary et al. investigated
Subtree Prune and Regraft (SPR) and Tree Bisection and
Reconstruction (TBR) edit operations to search for the
gene tree rearrangement that minimizes the number of
duplications, regardless of losses [24].
It seems hard to have an exact polynomial time algo-

rithm for the MPR problem under the DTL model even
when the polytomies are present only in the gene tree or
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in the species tree. Following the works cited above to deal
with uncertainties in the gene trees, we propose a heuris-
tic method relying on NNI edit operations to search for
a gene tree rearrangement that preserves strongly sup-
ported edges and minimizes the cost of reconciliation
to a fixed binary species tree, but in the context of the
more complex DTL model. The resulting dynamic pro-
gram, calledMowgliNNI, is a generalization ofMowgli [2],
a program initially developed for fixed binary gene trees.
Experiments on simulated data show that MowgliNNI

provides a gene tree that is closer to the true evolutionary
history of the gene family, and leads to more accurate D,
T and L predictions. Experiments on real data show a sig-
nificant decrease in the number of predicted events and
an increased precision, that is a decrease in the number
of equally most parsimonious reconciliations. We con-
ducted a large scale experiment where 30 k prokaryotic
gene families covering several phyla were reconciled using
MowgliNNI. These phyla were then ordered according to
their inferred transfer rate. We obtained the same phyla
ordering as the one obtained using Prunier, a method
dedicated to transfer prediction [29,30], and our recon-
ciliation based approach has the advantage of providing
extra information: explicit donor and receiver branches
for transfers, prediction and localization of duplications
and losses.

Methods
Basic notations
Trees considered in this paper are rooted and labeled at
their leaves only, each leaf being labeled with the name of
a studied species. Given a tree T, its node set, edge set,
leaf node set and root are resp. denoted V (T), E(T), L(T)

and r(T). The label of a leaf u of T is denoted by L(u) and
the set of labels of leaves of T is denoted by L(T). When a
node u has two children, they are denoted u1 and u2.
Given two nodes u and v of T, we write u ≤T v (resp.

u <T v) if and only if v is on the unique path from u to r(T)

(resp. and u �= v); if neither u <T v nor v <T u then u and
v are said to be incomparable. As we consider rooted trees
T only, we adopt the convention that an edge denoted
(v,u)means that u <T v. For a node u of T, Tu denotes the
subtree of T rooted at u, p(u) the parent node of u, while
(up,u) is the parent edge of u. A tree T ′ is a refinement of
a tree T if T can be obtained from T ′ by collapsing some
edges in T ′, i.e. by merging the two extremitites of these
edges [31].
A species tree is a rooted binary tree depicting the evolu-

tionary relationships of ancestral (internal nodes) species
leading to a set of extant (leaf ) species. A species tree
S is considered here to be dated, that is associated to a
time function θS : V (S) → R

+ such that if y <S x
then θ(y) < θ(x). Such times are usually estimated on the
basis of molecular sequences [32] and fossil records. Note

that to ensure the time consistency of inferred transfers,
absolute dates are not required, the important informa-
tion being the ordering of the nodes of S induced by the
dating.
Given a dated binary species tree S, the reconciliation

model we rely on considers a variant S′ of S called a sub-
division (as done also in [2,6,17]), associated to a time
function θS′ . More precisely, for each node x ∈ V (S)\L(S)
and each edge (yp, y) ∈ E(S) s.t. θS(yp) > θS(x) > θS(y),
an artificial node w is inserted along the edge (yp, y), with
θS′(w) = θS(x) (see Figure 1). Note that the height of S′
nodes (i.e. the number of their ancestors) is a valid time
function that preserves the same partial order on nodes
as θS′ and that the restriction of this time function to
V (S) ⊆ V (S′) preserves the partial order induced by θS.
A gene tree is a rooted binary tree depicting the evolu-

tionary history of a gene family, that lead to a set of homol-
ogous sequences observed in current organisms. Each leaf
of the gene tree has a unique label, corresponding to spe-
cific extant sequences of the gene. Indeed, several leaves
of a gene tree can be associated to a same species due to
duplication and transfert events. We denote by s(u) the
species associated to leaf u ∈ V (G).
A gene tree G with supports is a gene tree whose inter-

nal edges each have a support value. Let wkt(G) ⊆ E(G)

be the set of edges having a support value weaker than

Figure 1 Example of subdivision of a species tree. The subdivision
S′ is obtained from the species tree S by splitting some of its edges
thanks to additional artificial nodes (◦), i.e. nodes with a single child.
These nodes are added on edges at the precise date a node appears
somewhere else in S. For instance here, the artificial node s1 is placed
at the same date as the node s2 of S, while s4 and s5 are placed at the
same date as s3.
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threshold t and let strt(G) be E(G) − wkt(G), that is the
edges having a support equal or stronger than t.

Reconciliation model
Reconciling a gene tree G with a species tree S means
building a mapping α that associates each gene g ∈ V (G)

to a sequence of nodes in V (S), namely the species in
which the sequence g evolved. This evolution is submitted
to different kinds of biological events such as speciation,
duplication and transfer. The following definition presents
a discrete models of this evolution.

Definition 1 (Reconciliation model). Consider a gene
tree G, a species tree S with a time function θS, and its
subdivision S′ with a time function θS′.
Let α be a function that maps each node u of G onto

an ordered sequence of nodes of S′, denoted α(u). For u ∈
V (G), let � denote the length of α(u) and let αi(u) be its ith
element (where 1 ≤ i ≤ �). α is said to be a reconciliation
between G and S′ if and only if exactly one of the following
atomic events occurs for each couple of nodes u of G and
αi(u) of S′ (where αi(u) is denoted x):

• x is the last vertex α�(u) and exactly one of the cases
below is true.

1. u ∈ L(G), x ∈ L(S′) and L(x) = s(u). (C event)
2. x is not artificial

and {α1(u1),α1(u2)} = {x1, x2}.
(S event)

3. α1(u1) = α1(u2) = x. (D event)
4. α1(u1) = x, and α1(u2) = x′ is such that

x′ �= x and θS′(x′) = θS′(x). (T event)

• otherwise, one of the cases below is true.

5. x is an artificial vertex and αi+1(u) is its only
child. (∅ event)

6. x is not artificial and
αi+1(u) ∈ {x1, x2}. (SL event)

7. αi+1(u) = x′ is such that
x′ �= x and θS′(x′) = θS′(x). (TL event)

The combinatorial events mentioned above (S, D, T, C,
∅, TL, SL) are those defined in [2]. See Figure 2 for an
illustration of these events and Figure 3 for an example of
reconciliation according to this model.
Note that among these events, TL and SL are in

fact a combination of two independent biological events.
However, the fact that a loss is always taken into account
jointly with another event allows to obtain a recursive

Figure 2 The events of the reconciliation DTL model (Definition 1). Each possible event is displayed for a node u ofG and a node x of the
subdivided species tree S′ on which u is mapped. Note that a same node u can be mapped to several nodes. As a result of the mapping of its
nodes, the gene tree G, extended here with losses induced by the mapping (†), is embedded in S′ (here dashed lines represent edges of G, and plain
lines those of S′ , grayed rectangular zones represent nodes of S′).
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Figure 3 Example of a DTL reconciliation. (a) A gene treeG, represented with lost copies of the gene (◦), and a subdivided species tree S′ . (b) A
reconciliation α between G and S′ . The reconciliation maps each node of G onto a sequence of nodes in S′ , inducing evolutionary events. For
instance, nodes w, d1 and u from G are mapped as follows: α(w) =[ y], where α1(w) = y is an S event; α(d1) =[ x′ , x,D], where α1(d1) = x′ is a TL
event, α2(d1) = x is an SL event, and α3(d1) = D is a C event; α(u) =[ y′ , x, C], where α1(u) = y′ , α2(u) = x, and α3(u) = C are respectively a∅, an
SL, and a T event.

algorithm and is done without loss of generality, i.e. does
not reduce the power of the model [2].
Given a gene treeG and species tree S, there is an infinite

number of possible reconciliations. Discrete evolutionary
models compare them by counting the number of events
they respectively induce. As different types of event can
have different expectancies (e.g. L are thought to be more
frequent than D and T), reconciliation models allow for a
specific cost to be given to each kind of event. The cost of
a reconciliation is then the sum of the costs of the indi-
vidual events it induces. In that setting, the parsimony
approach is then to prefer a reconciliation of lower cost.
This is formalized in the following definition.

Definition 2. Let us consider a gene tree G, a subdivision
S′ of a species tree, and a reconciliation α between trees G
and S′. The cost of α is defined as

cost(α) = dδ + tτ + lλ,

where δ, τ , and λ respectively denote the cost of D, T, and
L events, while d, t, and l denote the number of the corre-
sponding events in α. Moreover, a TL event is atomic and
costs (τ + λ), while a SL event just costs λ. Indeed, specia-
tion events are most of the time considered as having a null
cost, but the model easily accommodates for non-null costs
if necessary.
The optimal reconciliation cost is

C(G, S′) = min
α

{cost(α)}

over all reconciliations α between G and S′.

Note that several distinct alternative reconciliations can
have an optimal reconciliation cost.

Lemma 1 (ConsecutiveTL events). Consider a gene tree
G, the subdivision S′ of a species tree, and a reconciliation
α of optimal cost C(G, S′) = c(α). For any node u of G, if
αi(u) corresponds to a TL event, then αi+1(u) does not.

This results from the observation that two TL in a row
can be replaced by single TL, leading to a reconciliation of
lesser cost.

Finding a most parsimonious reconciliation
To find one of the most parsimonious reconciliations
between a gene G and a species tree S we will rely on
the dynamic programming algorithm of Doyon et al. [2]
that computes the optimal reconciliation cost, C(G, S′)
on G and the subdivision S′ of S. This algorithm suc-
cessively examines the nodes u of G and their possible
mapping on nodes x of S′ (or equivalently on edges end-
ing at such nodes). A node u of G can be mapped on
such a vertex x according to different scenarios, each
postulating a different event at node u among those of
Definition 1. The optimal cost for mapping u at x is
defined according to the scenario of minimal cost. For
running time optimization reasons, the scenario involving
a TL event, whose cost is denoted cTL(u, x), is com-
puted after the other possible scenarios, c

TL
(u, x) denot-

ing the minimum cost that can be achieved among the
latter. This decomposition is possible since a TL event



Nguyen et al. Algorithms for Molecular Biology 2013, 8:12 Page 6 of 20
http://www.almob.org/content/8/1/12

is always followed by a C, S, D, T, ∅, or SL event (see
Lemma 1). As a result, the best receiver for a TL event
of node u with donor branch x can be computed from
the costs c

TL
(u, y) over all vertices y other than x such

that θS′(y) = θS′(x). The cost c
TL

(u, y) are themselves
computed from cTL(ui, x) values but for children ui of u
(see below). These intricate notions are formally detailed
in Definition 3.

Definition 3 (Reconciliation cost matrix). Consider a
gene tree G and the subdivision S′ of a species tree S
with a time function θS′. Let c : V (G) × V (S′) →
R denote the cost matrix recursively defined as follows
for a node u of G and a vertex x of S′: c

TL
(u, x) =

min{cE(u, x) : E ∈ {C,S,D,T,∅,SL}} and c(u, x) =
min{cTL(u, x), c

TL
(u, x)}, where the costs cE(u, x) for all

events x E ∈ {C, S,D,T,∅,SL,TL} are defined below

• cC(u, x) = 0, if u ∈ L(G), x ∈ L(S′) and L(x) = s(u).
• cS(u, x) = min{c(u1, x1) + c(u2, x2),

c(u1, x2) + c(u2, x1)}, if u /∈ L(G) and x /∈ L(S′).
• cD(u, x) = c(u1, x) + c(u2, x) + δ, if u /∈ L(G).
• cT(u, x) = min{c(u1, x) + c(u2, z), c(u1, y) + c(u2, x)}

+τ , with u /∈ L(G)and z (resp. y) denoting a vertex
that minimizes c(u2, z) (resp. c(u1, y))
over all vertices x′ ∈ V (S′) \ {x} such
that θS′(x′) = θS′(x).

• c∅(u, x) = c(u, x1), if x has a single child.
• cSL(u, x) = min{c(u, x1), c(u, x2)} + λ, if x has two

children.
• cTL(u, x) = c

TL
(u, y) + τ + λ, where y denotes a

vertex that minimizes c
TL

(u, y) over all vertices
x′ ∈ V (S′) \ {x} such that θS′(x′) = θS′(x).

If the above constraints for an event E ∈
{C,S,D,T,∅,SL,TL} on node u and vertex x are not
respected, the corresponding cost cE(u, x) is set to ∞.

The value c(u, x) is the optimal cost when mapping gene
node u to node x in S′. The optimal cost for reconciling G
with S′, denoted C(G, S′), is thenminx∈V (S′)(c(r(G), x).
The algorithm of Doyon et al. [2], called Mowgli, fills

the dynamic programming cost matrix V (S′) × V (G) →
R

+ by two embedded loops: one loop visits all species
nodes of S′ in time order (e.g. according to the θS′ par-
tial order, while the other loop visits nodes of the gene
tree G in postorder. Due to an optimization in pre-
computing the best receiver edge for transfer events of
nodes u at a given time, this algorithm has O(|S|2.|G|)
time complexity.
The problem considered in this paper is the following:

MOST PARSIMONIOUS RECONCILIATION GENE TREE
(MPR-GT)

INPUT:

• A dated species tree S with a time function θS
• a gene tree G with supports on its edges and whose

leaves are associated to leaves of S
• costs δ, τ , resp. λ for D, T, resp. L and
• a threshold t.

OUTPUT: a gene tree G′ such that both L(G) = L(G∗)
and strt(G) ⊆ E(G∗), and such that C(G∗, S′) is minimum
among all such trees.

Algorithm
We describe here a heuristic for the MPR-GT problem
that relies on a hill-climbing strategy to seek a (rooted)
gene tree G of minimum reconciliation cost (see Defini-
tion 3) using NNI edit operations [33].
Performing an NNI operation around an internal edge

(w, v) means swapping the position of one of the two sub-
trees connected to v with that of the subtree connected
to the sibling of v. Given an initial gene tree G and an
edge of G, two “alternative” trees can be obtained from G
by performing an NNI operation (see Figure 4). The hill-
climbing proceeds as follows: (1) select a weak edge of G;
(2) compute the reconciliation cost for the two alterna-
tive gene trees obtained by NNI on that edge; (3) if none
of these trees decreases the reconciliation cost, then try
another weak edge; if none of the weak edges allows to
progress, then G is a local minimum and the hill climbing
stops; (4) otherwise one of the alternative gene trees leads
to a decrease in reconciliation cost, and the above process
continues with the alternative tree of minimum reconcili-
ation cost. MowgliNNI outputs the final binary rearrange-
ment along with its most parsimonious reconciliation. In
the worst cases, MowgliNNI examines all unreliable edges
and does not find any better binary rearrangement of the

Figure 4 A gene treeGwith a weak edge (w, v) selected for an
NNI. v is connected to two subtrees Gc and Gd , while w is connected
to v and to the subtree Gb . Performing an NNI operation around
(w, v) means interchanging subtree Gb with either Gc or Gd , leading
to trees G′ and G" respectively.
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given gene tree G since the topology G is already (locally)
optimal. The whole scheme of MowgliNNI is described
in Figure 5.
Consider now the time complexity ofMowgliNNI. Iden-

tifying the weak edges is done in O(|G|) and generating
the two alternative gene trees for a NNI operation is
done in constant time. Hence, the complexity bottleneck
of MowgliNNI is the number of times (denoted N) the
�(|S|2 · |G|) Mowgli algorithm is called. Overall, the time
complexity of MowgliNNI is �(|S|2 · |G| · N). The next
section describes how we can avoid recomputing large
parts of the cost matrix, and hence greatly reduce the
running time ofMowgliNNI.

Combinatorial optimization
We now present results that take advantage of the way
the dynamic programming matrix is computed (Defini-
tion 3) to avoid recomputing from scratch the cost matrix
associated to a gene treeG′ obtained by an NNI edit oper-
ation from a gene tree G. Consider the gene tree G of
Figure 4, the NNI operation applied on edge (w, v) that
swaps the two subtrees Gb and Gc, and the resulting gene
tree denoted G′. We can observe that despite the global
architecture of G and G′ differs, the local architectures
of subtrees Gb,Gc,Gd,Ga0 , . . .Gak remain unchanged.

Hence, any cost that differs between the matrices C(G, S′)
and C(G′, S′) (see Definition 3) is located in a column
(i.e. node of the gene tree) associated to an ancestor of v
(including v itself ). For each of those nodes, there are two
cases: (i) the node belongs to the NNI edge and its two
children have subtree that have been modified (e.g. nodes
w and v); (ii) the node is a strict ancestor of the NNI edge
(w, v) and has exactly one child with a subtree that has
been modified (e.g. gk , . . . , g0).
Lemma 2 below indicates which columns of the cost

matrix don’t need to be recomputed.

Lemma 2. Consider a gene tree G, the subdivision S′ of
a species tree S, an edge (w, v) of G, and the gene tree G′
obtained from G by an NNI operation on (w, v). For each
node z of G that is not ancestor of v in G and for each vertex
x of S′, then c(z, x) = c′(z, x) holds.

This observation results from the fact that the dynamic
algorithm of Mowgli computes the value of a cell (z, x)
in the cost matrix using cells storing values either for
the same node z or for its children (see formulas of
Definition 3). Hence the value of a cell (z, x) directly or
indirectly depends only on values for cells correspond-
ing to z and its descendants. Going from gene tree G to

Figure 5 Algorithmic scheme ofMowgliNNIn (non-optimized version of the method).
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G′ by an NNI operation, precisely changes the descen-
dant relationships of v and its ancestors, i.e. all other
nodes z have the same descendants in both G and G′
(see Figure 4), hence c(z, x) = c′(z, x) holds for all these
nodes.
Unfortunately, there is no extension of Lemma 2 to

ensure that when an edge has already been unsuccessfully
tried for an NNI, it is useless to reconsider it later, even
if it is a descendant in G of the edge leading to the last
successful NNI.

Theorem 1. Consider a gene tree G, the subdivision S′ of
a species tree S, an edge (w, v) of G, a gene tree G′ obtained
by an NNI operation on (w, v), and any strict ancestor u of
w in G where the unique child of u that is an ancestor of w
is u1 w.l.o.g. (i.e. w ≤ u1 in both G and G’). If c(u1, x) ≤
c′(u1, x) holds for all x ∈ V (S′), then c(u, x) ≤ c′(u, x) holds
for all x ∈ V (S′), and as a corollary C(G, S′) ≤ C(G′, S′).

The proof of Theorem 1 is described in Appendix. This
theorem leads to the optimized algorithm of MowgliNNI,
formally stated in Algorithm 1 as an integrated proce-
dure run after Mowgli. The later computes a dynamic
programming matrix c : V (G) → V (S′) that MowgliNNI
then partly recomputes given a rearrangement performed
on the gene tree G. For each rearrangement, the matrix
recomputed by MowgliNNI, denoted c′: V (G′) →
V (S′), is obtained in worst case time O(|S′| · h(G)),
where h(G) is the height of G (i.e. the number of its
ancestors).

Algorithm 1 MowgliNNI(G, c): seeking a gene tree G′ of
minimum reconciliation cost, starting from a gene tree
G and the precomputed matrix reconciliation cost c :
V (G) × V (S′) → R, where S′ is the subdivided species
tree.
1: for all edges (w, v) ∈ wkt(G) do
2: For each node s of G that is not an ancestor of v, set

the column c′(s, ·) to c(s, ·).
3: For each vertex x of S′, recompute the cost c′(v, x)

according to Definition 3.
4: for all strict ancestors s of v according to a bottom-

up traversal of G do
5: For each vertex x of S′, recompute the cost c′(s, x)

according to Definition 3.
6: If c(s, x) ≤ c′(s, x) holds for each vertex x of S′,

then examine the next edge of loop at line 1 {the
NNI rearrangement tree G′ is refused}.

7: end for
8: Return MowgliNNI(G′, c′) {The rearranged tree G′

is accepted}.
9: end for

10: Return G {No successful rearrangement of G}

Theorem 2. MowgliNNI has worst case running time
O(|S|2 · |G| + |S|2 · h(G) · N)

Indeed the steps of Algorithm 1 can be described as
follows: initializing the reconciliation matrix for the ini-
tial gene tree is done in O(|S|2 · |G|) time; then updat-
ing the matrix for each of the N NNIs now only costs
O(|S′| · h(G)) = O(|S|2 · h(G)).
In MowgliNNI ’s naïve implementation each rearrange-

ment requires to recompute the cost associated to each
and every node of the gene tree. In contrast, in the
optimized version, an NNI around edge (w, v) is exam-
ined after updating only those costs associated to ances-
tral nodes of w. This has no impact on the worst
case complexity (when the gene tree is a caterpillar
h(G) is in O(|G|)) but significantly reduces the run-
ning times in practice since in most cases the number
of nodes in G is much larger than their average height.
For some random treemodels the average height of a node
in an n-leaf tree is indeed proportional to log(n) [34].

Results and discussion
Experiments on simulated datasets
Simulated gene trees and evolutionary histories
A phylogeny of 37 proteobacteria was used as a reference
species tree (denoted S) [8]. Along this tree, we simulated
the evolutionary history (denoted RTrue) of 1000 gene
families (GTrue), each containing from 10 to 100 genes,
according to a birth and death process [35]. Birth events
can be one of three kinds of evolutionary events, i.e. spe-
ciation, duplication, and horizontal gene transfer. During
the simulation process along the species tree, a speciation
occurs every time a gene lineage reaches an internal node
of the species tree, leading to a split in two gene lineages.
A birth event happening strictly between two nodes of the
species tree can only correspond to a gene duplication or
a horizontal gene transfer event. A birth is decided to be
duplication or a transfer according to the input rates of
these events.
The death of a gene lineage corresponds to a loss event,

which happens according to an input loss rate. The species
tree was scaled to the height of 500 million years (Mya).
The speciation rate is determined by the topology and the
height of the species tree. Each of the 1000 gene fam-
ilies was generated with different event rates, the loss
rate being randomly chosen in the range [0.0010–0.0018]
events/gene per million year. The ratio between the sum
of duplication and transfer rates and the loss rate was ran-
domly chosen in the range [0.5 - 1.1], the duplication rate
being [70% - 100%] of the mentionned sum. This birth
and death process first output a complete gene tree Go,
then the “true” gene tree GTrue was obtained from Go by
pruning extinct subtrees. The “true” evolutionary events
to be recovered by the reconciliation programs are those
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appearing in GTrue. We denote RTrue the history com-
posed by these events. We only considered gene families
containing at most ten duplication and transfer events in
their true evolution. In particular for the transfer events,
this constraint allowed us to limit the number of cases
where the true evolution contains a sequence of consecu-
tive transfers where non-transferred genes are lost (i.e. a
sequence of TL events). Such a piece of history can hardly
be recovered by reconciliation methods as it left no trace
at all in the gene tree.
Starting from GTrue, a further step of the simulation

protocol allows to obtain estimates of both this gene tree
and the events composing its history (see Figure 6).

The length of the edges in GTrue were first converted
from duration to number of substitutions per site by a
module taken from [36]. Next, we simulated the evolu-
tion of 1500 - 3000 bp DNA sequences along this tree
under the GTR model, thanks to the Seq-Gen program
[37]. The alignment, composed of one sequence per extant
gene, was then given as input to RAxML [38] to obtain
a maximum likelihood estimate of the gene tree, denoted
GML (also called initial gene tree below). Mowgli [2] and
Ranger-DTL-D [3] were then used to infer a most parsi-
monious evolutionary history RML, resp. RR, between this
initial gene tree and the reference species tree S. Sepa-
rately, MowgliNNI was used to search for an alternative

Figure 6 The simulation protocol to obtain inferred gene trees from sequences derived from a true gene tree. The module “Deviation from
ultrametricity” is taken from the program of Galtier that converts the edge lengths of ultrametric trees from the time unit into substitution numbers
[36]. GML denotes the initial gene tree inferred by Maximum Likelihood from the simulated sequences; RecML , resp. RecR , denotes the reconciliation
between GML and the reference species tree predicted byMowgli [2], resp. Ranger-DTL-D [3]; GNNI is the alternative gene tree found byMowgliNNI
and RecNNI is the reconciliation between GNNI and the species tree.
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gene tree topology (GNNI) of lower reconciliation cost,
along with one of its most parsimonious evolutionary
history (RNNI ). The elementary cost considered for each
event kind E (with E being D, T or L) was computed as
follows:

CostE =

⎧⎪⎪⎨
⎪⎪⎩

log
(DRTrue+TRTrue+LRTrue

ERTrue

)
if ERTrue �= 0

log
(DRTrue+TRTrue+LRTrue

0.1
)

otherwise
(1)

where ERTrue stands for the number of events of the corre-
sponding kind in RTrue.

Measuring the accuracy
First, we estimated the improvement in the accuracy of
the gene tree’s topology, as measured by the Robinson-
Foulds (RF) distance [39] between the true gene tree
(GTrue) and the inferred gene tree (GML). As a second
measurement of the accuracy of inferred reconciliations
we compared the positions of D, T and L events pre-
dicted by MowgliNNI and Mowgli with those present in
the true history. This is achieved by studying the pro-
portion of true positive (TP), false positive (FP) and false
negative (FN) separately for duplications, transfers and
losses [2]. True negatives (TN) were not studied as their
number is considerably large (if even finite) and hard to
determine. An event of RTrue is declared as correctly pre-
dicted when it concerns the right part of the gene tree
(node or edge) placed in the correct branch or node of
the species tree (see [2] for more details). Incidentally,
both the receiver and the donor edge of the species tree
have to be correctly indicated for a predicted transfer
event to be declared as correct.

MowgliNNI providesmore accurate inferences
We explored the ability of MowgliNNI to improve the
set of GML trees using six different bootstrap values as
threshold for defining weak edges, i.e. 20, 40, 60, 80, 90,
and 95. The GML trees were inferred from relatively long
sequences, they thus contained a large proportion of high
bootstrap values, e.g.more than 63% edges had a bootstrap
value ≥ 80. Though this left only a moderate number of
edges in each gene tree to be considered by MowgliNNI
for rearrangement, the method was still able to improve
their quality (see below).
Mowgli and Ranger-DTL-D showed a similar accu-

racy in inferring duplications and transfers (Figure 7),
though Ranger-DTL-D proposed reconciliations with
higher costs in 13% of the cases. As both methods rec-
onciled the same trees and used the same elementary
costs for the events, one might wonder why they did not
always obtain the same reconciliation costs. This results
from different factors among which the most important is

Figure 7 Impact ofMowgliNNI on the proportion of True Positive
events. The accuracy ofMowgli, Ranger-DTL-D andMowgliNNI
(threshold=80) in inferring duplications and transfers, where TPDT

(resp. FPDT , FNDT ) denotes the true positive (resp. false positive,
false negative) of duplications and transfers predicted.

that Ranger-DTL-D relies on a less general reconciliation
model than Mowgli (e.g. not ensuring time consistency
and not allowing gene loss in the donor branch after a
transfer), but which on the other hand allows it to run at
greater speed. As Mowgli and Ranger-DTL-D performed
similarly, in the following we just report results obtained
withMowgli.
MowgliNNI progressively reduced the number of pre-

dicted duplications, transfers and losses as the threshold
increased. At threshold 0 (where MowgliNNI = Mowgli,
5510 duplications, 2494 transfers and 12190 losses were
predicted on the whole dataset; going to threshold 80,
these numbers dropped to 4602 duplications, 1676 trans-
fers and 8133 losses, i.e. values that are much closer to the
4535 duplications and 8260 losses contained in the true
reconciliations.
Figure 8(a) shows that, no matter the threshold value,

the false positive (FP) of MowgliNNI are always less than
that of Mowgli both in terms of RF distance and evolu-
tionary events (duplications, transfers and losses). This
means that the GNNI trees are closer to the true ones than
the initial GML trees inferred from sequences only. Simi-
larly, the evolutionary events inferred from theGNNI trees
are more accurate. As the threshold increases from 0 to
80, RNNI contains less and less FP events, hence widening
the gap in accuracy between Mowgli and MowgliNNI.
As increasing the threshold results in reconsidering a
larger number of GML edges for NNI operations, this
means that the species tree examined through the recon-
ciliation lens is a good guide tree for correcting wrong
edges of the gene trees.
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Figure 8 Impact ofMowgliNNI on the proportion of False Positive events. (a) Average false positive error reduction achieved by NNI trees
(FPNNI ) w.r.t. that of the initial gene trees (FPML). The positive value indicate that the NNI tree has on average less errors than the initial tree. (b)
Average FP of the NNI trees – note that values at threshold 0 correspond to the FP ofMowgli.

The average number of false positive events of the
RNNI reconciliations decreases as the threshold increases
(Figure 8(b)). However, as in Doyon et al. [2], the aver-
age number of FP transfers is quite high compared to that
of duplications and losses. This can be explained by sev-
eral reasons. First, a transfer is judged incorrect as soon
as (i) it does not depart or end in the same edges of the
species tree as the corresponding true transfer, or (ii) it
does not concern the same edge in the gene tree. Over-
all, there is an additional constraint w.r.t. duplications and
loss events, leading on average to more incorrect events.
This point is all the more sensitive that several most parsi-
monious reconciliations (MPR) are obtained in a number
of cases, while we just accounted for one of them for each
gene family. Hence, event error rates we report are pes-
simistic, and especially for transfers due to the stringent
conditions for judging a transfer as correct. Note that the
multiplicity of MPRs does not affect the RF error terms.
Last, incorrect gene trees lead to incorrect event infer-
ences, but the latter are very sensitive to only small errors
in gene trees. The event FP error grows almost exponen-
tially when the RF distance between the initial and the
true tree increases from 0 to 10% (Figure 9). Figures 8
and 10 show that transfers are more influenced by this
factor, as a result of more stringent conditions for being
correct.

Influence of the sequence length parameter
MowgliNNI achieved a higher improvement over Mowgli
on the subset of 327 GML families inferred from short

sequences (length 1500–2000 bp) than on the subset of
336 families inferred from long sequences (length 2500–
3000 bp), see Table 1. For instance, at threshold 80,
MowgliNNI was able to proposed a modified gene tree
(GNNI) for up to 83%, resp. 92%, of the families containing
weak edges whenGML was inferred from long, resp. short,
sequences. Similar results were observed for the quality
of modified gene trees(GNNI) in term of RF distance to
GTrue and for the quality of reconciliations in term of event
distance between inferred and true reconciliation. The
fact that higher improvements are obtained for shorter
sequences was confirmed through the simulation of 1000
GML families inferred from much shorter sequences (400
bp), where still a higher improvements where obtained
(see Table 2).

Robustness of reconciliations to imprecision in the event costs
In order to measure the dependance of MowgliNNI on
the precise costs used for each kind of event, we ran the
method with the threshold t = 80 on GML trees with
costs varying up to 10%, 20%, then 50% w.r.t. those used
derived from RTrue using Formula (1). The paired t-test for
RF distances shows that the GNNI trees obtained with the
new noisy costs are not significantly different from those
obtained with the former costs (p-value=0.1747, 0.1758,
0.1144 respectively). The accuracy of inferred events also
does not change much. Transfers have the highest varia-
tion with 4.2% (resp. 3.1%) increase in FP (resp. FN) when
the event costs vary up to 50% (Table 3). Thus,MowgliNNI
is quite robust to changes in the event costs.
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Figure 9 Impact of gene tree errors on reconciliation accuracy. The false positive (FPDTL) error rate of the events predicted by reconciliation
methods grows exponentially with respect to the Robinson Foulds distance between the initial and true tree.

Room for future improvement
To measure how much of the achievable improvement
over the GML trees was realized by MowgliNNI, we stud-
ied the distribution of reconciliation costs of all possible
gene trees for several cases involving a computationally

manageable number of species. The shape of the distri-
bution together with the relative position of the costs
obtained for GTrue, GML and GNNI within those distribu-
tions gives information on how much improvement could
be achieved in the future by more sophisticated methods

Figure 10 Impact ofMowgliNNI on the proportion of False Negative events. (a) The false negative reduction of NNI gene trees (FNNNI ) in
comparison to the initial gene trees (FNML). While reducing the number of wrong events predicted,MowgliNNImostly does not remove the events
that have been correctly predicted. (b) FN of the NNI trees. FN and FP of Robinson Foulds distance are the same since the true, initial and NNI gene
trees are binary.
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Table 1 Quality of the gene trees (GNNI ) and reconciliations (RNNI ) inferred byMowgliNNI depending on the length of the
sequences used to obtainGML trees and on the threshold indicating weak edges

Short sequences Long sequences

Threshold 20 80 95 20 80 95

Number of gene families containing weak edges 163 323 327 118 328 332

%cases s.t. Cost(S,GNNI) < Cost(S,GML) 80 92 91 75 83 84

%cases s.t. RF(GTrue ,GNNI) < RF(GTrue ,GML) 43 74 73 29 67 67

%cases s.t. RF(GTrue ,GNNI) = RF(GTrue ,GML) 53 17 18 67 26 24

%cases s.t. RF(GTrue ,GNNI) > RF(GTrue ,GML) 4 9 9 4 7 9

%cases s.t. ED(RTrue , RNNI) < ED(RTrue , RML) 66 82 83 51 76 76

%cases s.t. ED(RTrue , RNNI) = ED(RTrue , RML) 24 12 12 33 20 19

%cases s.t. ED(RTrue , RNNI) > ED(RTrue , RML) 10 6 5 16 4 5

Threshold of 20, 80 and 95 bootstrap support values are reported and sequence alignments of length in the range 1500 - 2000 bp (short seq.) or 2500–3000 bp
(long seq.) were considered. For each threshold, the second row indicates the number of gene families (GML) containing weak edges among the 327 (resp. 336) families
inferred from short (resp. long) sequences. The third row indicates the percentage of these families whereMowgliNNI proposes a modified tree of lower reconciliation
cost. The last six rows provide the percentage of the former families whereMowgliNNI provides modified gene trees (resp. reconciliations) that are closer, equally far or
farther from the true gene trees (resp. the true reconciliations). RF(GTrue ,GX ) denotes the Robinson Foulds distance between GTrue and GX ,
ED(RTrue , RX ) = |RTrue − RX | + |RX−
RTrue|, where X stands for NNI or ML.

(e.g., relying on SPR moves). We report here on two cases
representative of our observations: two true gene trees
GA
True,G

B
True of 8 taxa were generated from the species tree

S of 37 proteobacteria according to the protocol described
in Figure 6. Their two associated histories A and B were
used as starting points to obtain both sequence align-
ments and reconciliations costs (according to Equation 1).
This time, 50 sequence alignments were generated from
each of the two gene trees. A maximum likelihood tree
was obtained from each of the 100 alignments, with
bootstrap supports associated to its edges. These trees
were then submitted for improvement to MowgliNNI,
applying a threshold 50 to specify weak edges, and relying
on event costs corresponding to histories A and B respec-
tively. All reconciliations were performed with respect to
the species tree S.

Figure 11 shows the distributions of reconciliation costs
C(S,G) obtained for all possible binary trees G having
the same leaves as GA

True and GB
True respectively. The

first observation is that though the same species tree
was used in both cases, these distributions vary sig-
nificantly in range and shape depending on the gene
tree leaf set. In the case of history B, the number of
trees with reconciliation costs falling in a given range
varies sporadically, whereas the number of trees in a
given range almost follows a normal (or beta) distribution
for history A.
History A involved 2 duplications, no transfer and

7 losses and was correctly recovered by the parsimo-
nious reconciliation of Mowgli from GA

True. However,
History B (involving 2 duplications, 1 transfer and 5
losses) was incorrectly recovered fromGB

True, the achieved

Table 2 Quality of the gene trees (GNNI ) and reconciliations (RNNI ) inferred byMowgliNNI on very short sequences

Threshold 20 80 95

Number of gene families containing weak edges 794 1000 1000

%cases s.t. Cost(S,GNNI) < Cost(S,GML) 89 97 97

%cases s.t. RF(GTrue ,GNNI) < RF(GTrue ,GML) 58 77 75

%cases s.t. RF(GTrue ,GNNI) = RF(GTrue ,GML) 39 16 16

%cases s.t. RF(GTrue ,GNNI) > RF(GTrue ,GML) 3 7 9

%cases s.t. ED(RTrue , RNNI) < ED(RTrue , RML) 78 91 91

%cases s.t. ED(RTrue , RNNI) = ED(RTrue , RML) 15 5 5

%cases s.t. ED(RTrue , RNNI) > ED(RTrue , RML) 7 4 4

For each tested threshold value, the second row indicates the number of gene families (GML) containing some weak edges among 1000 families inferred from very
short sequences of length 400 bp. Third row indicates the percentage of these families whereMowgliNNI proposes a modified tree of lower reconciliation cost. The last
six rows provide the percentage of the former families whereMowgliNNI provides modified gene trees (resp. reconciliations) that are closer, equally far or farther from
the true gene trees (resp. the true evolutions). RF(GTrue ,GX ) denotes the Robinson Foulds distance between GTrue and GX , ED(RTrue , RX ) = |RTrue − RX | + |RX − RTrue|,
where X stands for NNI or ML.
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Table 3 The robustness ofMowgliNNI to changes in event costs with respect to the initial ones computed by Formula (1)
(Column 1)

Event cost variation RF FP Dup FP Tran FP Loss FN Dup FN Tran FN Loss

0% 12.8 14.1 69.9 14.9 12.8 42.5 16.2

10% 12.9 14.3 72.1 16.4 13.0 45.0 17.6

20% 12.9 14.4 71.1 16.8 13.2 44.2 17.7

50% 12.9 14.6 74.1 17.8 15.0 45.6 18.9

Error terms (in %) are the Robinson Foulds distances (RF) as well as the false positive (FP), and false negative (FN) for the various event predicted. Non-negligible
variations in event costs result in small variations of the error terms (transfers being the most affected).

C(GB
True, S) = 3.98 cost being less than the 5.75 cost for

the real history. Though the real cost is in the left part
of the distribution, it is not the minimum point of the
distribution, showing that parsimony can sometimes be
misleading when followed to its extreme.
Nevertheless, in both cases, the true gene tree is among

the ones having the minimum reconciliation costs: it is
precisely the one leading to the minimum cost for his-
tory A and among the nine best trees for history B.
On these examples (and other cases not shown), parsi-
mony can be considered as a very good guide towards
the correct gene tree, even if the reconciliation from this
correct tree can underestimate the number of real events
(as discussed above).
For both histories A and B,MowgliNNI proposed a gene

tree GNNI whose reconciliation cost was on average closer
from that of the true gene tree – and from the real cost –
than the cost obtained from the maximum likelihood tree.

Conclusion on simulated datasets
In summary, MowgliNNI successfully uses the recon-
ciliation cost as additional information to resolve the
uncertain parts of gene trees inferred from sequences
only. Though the gene tree resolutions are partly guided
by reconciliations with the species tree, they are not
attracted away from the true gene trees, but are closer
to them than the initial gene trees. As a result,
MowgliNNI infers gene eventsmore accurately, which is of
prior importance to distinguish orthologs from paralogs
and xenologs [14].

Experiments on real data
As species tree S, we chose a phylogeny covering 336
genomes of Bacteria and Archaea recently inferred by
Abby et al. [30].
Then, a dataset of 29, 709 homologous gene families

spanning these taxa was collected from the HOGENOM

Figure 11 Distributions of reconciliation costs C(S,G) over all possible binary gene treesG for two sets of 8 taxa from the phylogeny S of
37 proteobacteria, obtained by generating two simulated histories A and B along S. For each distribution, we indicate the position of
C(GTrue , S), the reconciliation cost obtained byMowgli for the true gene tree of the corresponding history. The plot also indicates the average cost
C(S,GML) obtained for reconciliations from maximum likelihood trees and the average cost C(S,GNNI) obtained for reconciliations ofMowgliNNI
trees obtained from the maximum likelihood trees.
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database (release 04) [40]. Each such family contains
from 3 to 312 taxa. The gene tree of each family from
this dataset was reconciled with the species tree by
Mowgli and MowgliNNI using costs τ = 3, δ = 3.5,
resp. λ = 1 for transfers, duplications, resp. losses. These
costs were estimated on the basis of several bacteria phyla
by a maximum likelihood method [18,41]. A threshold of
50% for branch support values was used to indicate to
MowgliNNI the weak edges in the gene trees.

A decrease in the number of inferred events and
reconciliation costs
MowgliNNI allowed to change the gene tree, hence to
lower the reconciliation cost, in 24% of the ≈ 30, 000
families. This gain is non-negligible and has a real impor-
tance as changing the gene tree topology has an important
impact on the inferred events (as already shown on simu-
lated datasets and discussed below). In turn, these inferred
events may serve to predict the function of new sequences
on the basis of their orthology relationships with anno-
tated sequences, orthology following from the chosen
reconciliation. Among previous reconciliation studies that
allowed to modify the gene trees, Berglund-Sonnhammer
et al. report that 10% of their families were improved [21]
when allowing rearrangements on weak edges under the
DL model, while Chaudhary et al. improved all their gene
trees in a pure D model when rearranging gene trees with
Subtree Prune and Regraft (SPR) operations [24]. Note
that the heterogeneity of models and datasets used in
these studies limit the comparison of their results, but we
cite them for completeness.
For gene families with a lower reconciliation cost (24%

of all families), we counted the number of events of each
kind (D,T,L) inferred by Mowgli and MowgliNNI. As a
rule,MowgliNNI led to a decrease in the number of events
in inferred evolutionary histories. In particular, the num-
ber of transfers is reduced in 88.3% of these gene families,
the number of losses being reduced in 59.9%, while the
number of duplications is almost the same (decrease in
5.2% of the families). These results obtained in the DTL
model echo those of Durand et al. reporting that in the
DL model gene tree rearrangements substantially reduce
the number of events needed to explain the data [19].
The differences in reductions we observed among the
kind of events can be explained by the costs – estimated
from [18,41] – that we used for the events (τ = 3, δ =
3.5, λ = 1). Given those costs, it is usually more par-
simonious to explain the conflicts between a gene and
the species tree by a combination of T and L rather
than a combination of D, and L. Thus, when MowgliNNI
infers a gene tree closer to the species tree, it mostly
removes the need for artificial transfers (and losses to a
lesser extent), while not altering that much the number
of duplications.

To give a precise example of how MowgliNNI pro-
poses a more parsimonious reconciliation on a mod-
ified gene tree than Mowgli on the initial gene tree,
Figure 12 details the particular case of family HBG040981,
(a putative tocopherol cyclase). In this case, MowgliNNI
proposes a gene history resorting to less events by
rearranging an edge with a very small support. The
gene tree modified by MowgliNNI leads to a recon-
ciliation having one transfer and one loss less than
the reconciliation performed from the initial gene tree.
On the whole, the reconciliation cost goes from 9.5
down to 5.5.

A decrease in the number of equallymost parsimonious
reconciliations
In addition to reductions in number of events and hence
reconciliation cost, the modified gene trees proposed by
MowgliNNI usually reduced the number of alternative
MPRs, i.e. equally most parsimonious histories. On a
random sample of two dozens modified gene trees, the
number ofMPRs is reduced in 63% of the cases (by a factor
of 18 in the best case), and increased in 21% (by a factor 3
at worst). This echoes similar observations done by other
authors.

The improvement in running time due to the optimized
version of MowgliNNI
We measured the running time of Mowgli and that of
both the naive and optimized versions of MowgliNNI
(see Methods), respectively called MowgliNNIn and
MowgliNNI. From the ≈ 30 k families of our dataset,
we extracted a random sample of 100 families uni-
formly spanning from 10 to 80 taxa, and respecting
the previously observed proportion of improving / non-
improving cases in the reconciliation cost (i.e., 24% and
76% resp.). This sample was used to run the three pro-
grams. Figure 13 reports the ratios of MowgliNNIn and
MowgliNNI running times over those of Mowgli, with
respect to the number of weak edges within the input
gene tree. Indeed, for each gene tree, the number of tested
rearrangements during the optimization search depends
on the number of weak edges, which hence strongly
impacts MowgliNNIn and MowgliNNI running times.
Note that the number of weak edges often represents
between 10% and 20% of the gene tree edges, but can go
up to 70%.
Figure 13 shows thatMowgliNNI is 20 (resp. 50 and 80)

times faster than MowgliNNIn, when facing 1–20 (resp.
20–40 and 40–60) weak edges. This shows that the com-
binatorial optimization proposed in the Methods section
is crucial in practice.
Now, when compared to Mowgli, the rearrangements

tried by MowgliNNIn on weak edges to obtain a bet-
ter gene tree are done at the price of a relatively small
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Figure 12 Example of reconciliation withMowgli (top) andMowgliNNI (bottom). A and D are the gene trees. The NNI rearrangement around
the green bold edge in A exchanging the two subtrees in green circles results in D. B and E are the reconciled gene trees showing the duplications
(blue squares), losses (red crosses) and the transferred subtree (purple). C, resp. F, is the species tree with the events inferred byMowgli, resp.
MowgliNNI, mapped onto the appropriate edges (a purple arrow shows the origin and destination of the transfer). NOSTO1 - Nostoc sp. PCC 7120;
ANVAR1 - Anabaena variabilis ATCC 29413; TRERY1 - Trichodesmium erythraeum IMS101; SYNEC4 - Synechococcus sp. JA-2–3B’a(2–13);
SYNEC5 - Synechococcus sp. JA-3–3Ab; SYNEY1 - Synechocystis sp. PCC 6803; GLVIO1 - Gloeobacter violaceus PCC 7421; THELO1 -
Thermosynechococcus elongatus BP-1; PRMAR1 - Prochlorococcusmarinus str. MIT 9312.

computation time overcost. We also indicate the regres-
sion line of MowgliNNI running times with respect to
those of Mowgli, plotted against the number of weak
edges. Its slope is only 0.01186, meaning that MowgliNNI
(the optimized version) is able to take into account the
gene tree uncertainties with just a slight increase in the
running time.

Transfers in prokaryotic phyla
On our whole dataset of 29, 709 homologous gene fam-
ilies, we particularly studied transfers in 5 bacterial
and 1 archaeal phyla: Proteobacteria (169 genomes),
Actinobacteria (31 genomes), Cyanobacteria (14 gen-
omes), Chlamydiae (7 genomes), Spirochaetes (7 gen-
omes) and Crenarchaeota (10 genomes). We compared
our results obtained withMowgli andMowgliNNI to those

of Abby et al. [30] obtained with the Prunier method
[29] that infers transfers in mono-copy gene families on
another basis than reconciliation.
In order to compare our results to the Abby et al. study,

we extracted particular families from HOGENOM v4.
For each of the 6 phyla of interest, we collected the
list of families having at most one copy of the gene for
the genomes of this phylum and separated them into
two groups: families having one copy of the gene for
each genome of the phylum, so-called “universal fam-
ilies”, and families having a copy of the gene for at
least 7 genomes of the phylum, so-called “non-universal
families”.
For each phylum, we computed the number of intra-

phylum transfers inferred by reconciliations of Mowgli
and MowgliNNI for families of the two groups (universal
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Figure 13 Compared running times of reconciliation methods. Two sets of values are plotted: each blue dot, resp. red triangle, corresponds to
the ratio between the running time ofMowgliNNI n , resp.MowgliNNI and that ofMowgli on a same gene tree, depending on the number of weak
edges. Regression lines are provided for both dot sets.

and non-universal). As the number of families we found
in several groups among the various phyla varied slightly
from those reported by Abby et al. [30] we summarized
the findings of both studies in terms of transfer rates,
expressed in number of transfers per million year and per
family.
Figures 14 and 15 display transfer rates of universal,

resp. non-universal families, for the studied phyla ordered
by increasing transfer rate. We note that the obtained

order on the phyla depends on the profile of the stud-
ied families, as in Abby et al. [30]. For both the universal
and the non-universal families, the transfer rates obtained
through Mowgli and MowgliNNI follow the same trend
as that prediced by the Prunier method, i.e. the phyla are
ordered in the same way, from the Spirochaetes up to the
Actinobacteria in the case of universal families and from
the Proteobacteria up to the Crenarchaeota in the case of
non-universal families.

Figure 14 Impact ofMowgliNNI on transfer rate inferred on a real dataset of “universal families”. Comparison ofMowgli,MowgliNNI and
Prunier [29] on the basis of their transfer rate per million year per gene family, for prokaryotic phyla having mono-copy universal families (i.e. families
having one copy of the gene for each genome of the considered phylum). No mono-copy universal family was found for Proteobacteria.
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Figure 15 Impact ofMowgliNNI on transfer rate inferred on a real dataset of “non-universal families”. Comparison ofMowgli,MowgliNNI and
Prunier [29] on the basis of their transfer rate per million year per gene family, for prokaryotic phyla having mono-copy non-universal families (i.e.
families having at most one copy of the gene for the genomes of a considered phylum, and covering at least 7 genomes of this phylum). No
mono-copy non-universal families was found for the Chlamydiae and Spirochaetes phyla.

Finally, as expected,MowgliNNI reduced the number of
inferred transfers compared toMowgli, leading to transfer
rates closer to that inferred by Prunier.

Conclusion
We introduce the MowgliNNI heuristic method rely-
ing on NNI rearrangements of the uncertain parts of
the gene trees to solve a parsimony optimization prob-
lem for reconciliations accounting for duplications (D),
losses (L) and transfers (T). We show experimental evi-
dence that reconciliations computed under the parsimony
criterion can efficiently correct erroneous parts of gene
trees inferred from sequence data. On simulated data,
MowgliNNI often proposes a new gene tree topology that
is closer to the correct one and that also leads to bet-
ter D, T and L predictions. Moreover, the number of
events and the number of most parsimonious reconcil-
iations predicted by MowgliNNI are significantly lower
than those obtained without questioning the gene tree
topology. This is confirmed on real data. A critical point
for parsimony methods is the choice of respective costs
for the considered evolutionary events. We show here
that MowgliNNI ’s performance is only slightly altered
when changing the costs given to the individual events
(D, T and L), that is, the method is robust to cost
misspecification.

Appendix
Proof of Theorem 1

Theorem 1. Consider a gene tree G, the subdivision S′ of
a species tree S, an edge (w, v) of G, a gene tree G′ obtained
by an NNI operation on (w, v), and any strict ancestor u of
w in G where the unique child of u that is an ancestor of w
is u1 w.l.o.g. (i.e. w ≤ u1 in both G and G’). If c(u1, x) ≤

c′(u1, x) holds for all x ∈ V (S′), then c(u, x) ≤ c′(u, x) holds
for all x ∈ V (S′), and as a corollary C(G, S′) ≤ C(G′, S′).

Proof. First remark that an NNI operation performed
around the edge (w, v) of G to obtain a modified tree
G′ does not alter the order of the nodes above v, which
are then considered below indifferently of the tree they
belong.
The proof is donewith a recurrence over increasing time

t ∈ {0, 1, . . . , h(r(S′))} for the subset of nodes Vt(S′) ⊂
V (S′). Recall that, in S′ the height of a node u (denoted
h(u)) is a valid time function (see Figure 1) and that u1
is the child of u that is an ancestor of w (whereas u2 is
incomparable with w).

Base case
For time t = 0, the possible events for the internal node
u and any leaf x ∈ V0(S′) are D, T, and TL (see the
reconciliation model of Definition 1).
For each event E ∈ {D,T}, cE(u, x) (resp. c′

E
(u, x))

depends on the costs c(ui, y) (resp. c′(ui, y)) over all chil-
dren ui ∈ {u1,u2} and vertices y ∈ Vt(S′) (see Defini-
tion 3). Since u2 (resp. u1) is incomparable to (resp. an
ancestor of ) w, Lemma 2 implies that c(u2, y) = c′(u2, y)
and the assumption states that c(u1, y) ≤ c′(u1, y).
That all costs used in the equation of c′

E
(u, x) are not lower

than the corresponding costs in that of cE(u, x) leads to
properties listed in the following remark.

Remark 1. The following properties hold for all internal
nodes u ∈ V (G) \ L(G).

1. For all events E ∈ {D,T} and leaves x ∈ V0(S′),
cE(u, x) ≤ c′

E
(u, x) holds.
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2. For all leaves leaves x ∈ V0(S′),min{cE(u, x) : E ∈
{D,T}} ≤ min{c′

E
(u, x) : E ∈ {D,T}}.

3. min
x∈V0(S′)

c
TL

(u, x) ≤ min
x′∈V0(S′)

c′
TL

(u, x′), since

C/S/∅/SL are impossible events at height 0.

For a TL event of node u on a leaf x ∈ V0(S′), we have
the following:

cTL(u, x) = τ + λ + (where y min . c
TL

(u, y)
c
TL

(u, y) over all y ∈ V (S′) \ {x}
s.t. θS′(y) = θS′(x))

≤ τ + λ + (where y′ min . c
TL

′(u, y′)
c′
TL

(u, y′) over all y′ ∈ V (S′) \ {x},
s.t. θS′(y) = θS′(x))
Remark 1(case3)

= c′
TL

(u, x) (Definition 3)

Hence, we have the following result:

Remark 2. For all internal nodes u ∈ V (G) \ L(G) and
leaves x ∈ V0(S′), cTL(u, x) ≤ c′

TL
(u, x) holds.

And we obtain the following:

c(u, x) = min{ cE(u, x) : (Definition 3; {D,T,TL
are E ∈ {D,T,TL} } the only possibilities)

≤ min{c′
E
(u, x) :

E ∈ {D,T,TL} } (Remarks 1 and 2)
= c′(u, x) (Def. 3;D,T,TL are

the only possibilities)

Therefore, c(u, x) ≤ c′(u, x) holds for each leaf x ∈ V0(S′).

Inductive step
For a height 0 ≤ t < h(S), we now suppose that the
expected property c(u, y) ≤ c′(u, y) holds for all ver-
tices y ∈ Vt(S′) and prove that it still holds for any
vertex x ∈ Vt+1(S). S, D, T, ∅, SL, and TL are the pos-
sible events for node u and vertex x. Following exactly
the same arguments as in the base case, Remark 1 (D
and T) and Remark 2 (TL) still hold for the current
time (t + 1).
The dependencies of the corresponding cost for S, ∅,

and SL events are as follows: cS(u, x) depends on the
costs c(ui, xi) for ui ∈ {u1,u2} and xi ∈ {x1, x2}, with
xi ∈ Vt(S′); c∅(u, x) on c(u, x1), with x1 ∈ Vt(S′);
and cSL(u, x) on c(u, xi) for xi ∈ {x1, x2}, with xi ∈
Vt(S′). The same dependencies apply for c′

S
(u, x), c′

∅
(u, x),

and c′
SL

(u, x). Recall that u2 (resp. u1) is incomparable
to (resp. an ancestor of ) w and that Lemma 2 (resp.
the assumption) implies that c(u2, xi) = c′(u2, xi) (resp.
c(u1, xi) ≤ c′(u1, xi)) for each xi ∈ {x1, x2}. Moreover,

the inductive hypothesis states that c(u, xi) ≤ c′(u, xi)
holds for each child xi of x since xi ∈ Vt(S′). For
each event E ∈ {S,∅,SL}, that all costs used in the
equation of c′

E
(u, x) are not lower than the correspond-

ing costs used in the equation of cE(u, x) leads to the
following result:

Remark 3. For all events E ∈ {S,∅,SL}, internal nodes
u ∈ V (G) \ L(G) and internal vertices x ∈ Vt+1(S′),
cE(u, x) ≤ c′

E
(u, x) holds.

We obtain the following:

c(u, x) =min{ cE(u, x) : E ∈ (Def. 3, C is not an
{D,T,TL,S,∅,SL} } event for u /∈ L(G))

≤min{ c′
E
(u, x) : E ∈

{D,T,TL,S,∅,SL} } (Remarks 1, 2, 3)
= c′(u, x) (Def. 3, C is not an

event for u /∈ L(G))

Therefore, c(u, x) ≤ c′(u, x) holds for each vertex x ∈
Vt+1(S′), and thus for all vertices of S′.
As a corollary, the same inequality holds between the

root nodes r of G and G′, since w ≤ r. Then C(G, S′) ≤
C(G′, S′).
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