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Abstract

Background: Protein structure alignment is often modeled as the largest common point set (LCP) problem based on
the Root Mean Square Deviation (RMSD), a measure commonly used to evaluate structural similarity. In the problem,
each residue is represented by the coordinate of the Cα atom, and a structure is modeled as a sequence of 3D points.
Out of two such sequences, one is to find two equal-sized subsequences of the maximum length, and a bijection
between the points of the subsequences which gives an RMSD within a given threshold. The problem is considered
to be difficult in terms of time complexity, but the reasons for its difficulty is not well-understood. Improving this time
complexity is considered important in protein structure prediction and structural comparison, where the task of
comparing very numerous structures is commonly encountered.

Results: To study why the LCP problem is difficult, we define a natural variant of the problem, called theminimum
aligned distance (MAD). In the MAD problem, the length of the subsequences to obtain is specified in the input; and
instead of fulfilling a threshold, the RMSD between the points of the two subsequences is to be minimized. Our results
show that the difficulty of the two problems does not lie solely in the combinatorial complexity of finding the optimal
subsequences, or in the task of superimposing the structures. By placing a limit on the distance between consecutive
points, and assuming that the points are specified as integral values, we show that both problems are equally difficult,
in the sense that they are reducible to each other. In this case, both problems can be exactly solved in polynomial
time, although the time complexity remains high.

Conclusions: We showed insights and techniques which we hope will lead to practical algorithms for the LCP
problem for protein structures. The study identified two important factors in the problem’s complexity: (1) The lack of
a limit in the distance between the consecutive points of a structure; (2) The arbitrariness of the precision allowed in
the input values. Both issues are of little practical concern for the purpose of protein structure alignment. When these
factors are removed, the LCP problem is as hard as that of minimizing the RMSD (MAD problem), and can be solved
exactly in polynomial time.
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Background
A common approach to understand the properties of a
protein is to compare it to other proteins. Proteins that are
similar, in terms of either their amino acid sequences or 3-
dimensional structures, often share similar functions, or
are related evolutionarily. The latter, structural compari-
son, is particularly interesting since protein structures are
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known to be more evolutionarily conserved than the bio-
logical sequences which encode them. Furthermore, pro-
teins of similar structures may have similar functionality,
even when their sequences differ [1].
Structural comparison is typically a problem of align-

ing two sets of 3-dimensional coordinates. (In most of the
known structural alignment problems, each point is the
3D coordinates of the Cα atom, one per residue. Hence,
a structure can be modeled for structural alignment pur-
pose as a sequence of 3D points.) The alignment usually
involves a rigid transformation to superimpose the two
sequences of points, and a mapping which specifies the

© 2013 Li; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.



Li Algorithms for Molecular Biology 2013, 8:1 Page 2 of 9
http://www.almob.org/content/8/1/1

matched points. The parameters to optimize in the align-
ment may differ in different situations, because it is not
easy to single out a set of parameters that best captures
the similarity between two given structures [2]. In many
situations, the alignment needs not match between every
point in the two sequences. At present, there is a consen-
sus among molecular biologists in the use of the following
two parameters [2-4]:

1. the number of residues (points) or percentage of total
residues (points) matched in the alignment.

2. the root mean square deviation (RMSD) of the
matched residues (points).

In general, the RMSD need not be minimized. It suf-
fices that it is within a reasonable threshold. Hence, a
good alignment is customarily taken to be one whichmax-
imizes the number of residue matches, within a given
RMSD threshold. Many structural alignment methods are
based on this principle. The computational complexity of
finding an optimal solution to the problem is not well
understood. Shibuya et al. formulated a restricted ver-
sion of the problem, and showed the problem to NP-hard
when the dimensionality is arbitrary. It is open whether
their problem is NP-hard in 3-dimension [5]. Other prob-
lems related to structural comparison based on the RMSD
have been found to be difficult. For example, the prob-
lem of finding a substructure frommultiple 3-dimensional
structures which minimizes the total RMSD, is NP-
hard [6].
For the variants of the alignment problem that are not

based on the RMSD, we have the following results. When
the objective is to maximize the number of point matches
which are no more than a threshold distance apart, the
problem is solvable in O(n32.5) time, where n is the num-
ber of points [7]. The contact map overlap problem, where
a graph is created out of each structure, and the prob-
lem is one of comparing the two graphs, is NP-hard
[8], and remains NP-hard even when we require points
that are matchable to be within a threshold distance [9].
These results, together with an early result which shows
a related problem called threading to be NP-hard [10],
have traditionally led molecular biologists to believe that
the structural alignment problem is difficult in general
(e.g. [11-13]), even though a PTAS exists for the problem
under a broad class of distance measures [14]. Heuristic
algorithms have also been proposed for many variants of
structural alignment problem [15-23]. While these meth-
ods perform reasonably well in general, they provide no
guarantee on the quality of their results.
As noted by Shibuya et al., relatively few theoretical

results have been obtained on problems defined over the
RMSD, and the general problem of structural alignment
under the RMSD remains open [5]. At present, whether

the problem is intractable or not is not only of theoretical
interests but also of practical concerns, due to advances in
protein structure prediction which requires the compar-
ison of very numerous structures. In this paper we show
mathematical insights and techniques which we hope will
lead to practical algorithms for the problem.
We first show that the difficulty of the problem does not

lie solely in the individual components of their require-
ment. More precisely,

– if either a mapping that contains the optimal
mapping is known (Theorem 3), or

– if the optimal superposition is known (Lemma 1),

then the problem can be solved in polynomial time.
Our study shows that the difficulty of the LCP problem

is also very much due to the two factors: (1) the problem
allows the input coordinates to be of any arbitrary preci-
sion, and (2) it assumes no limit on the distance between
two consecutive Cα atoms.
We consider the case where the input coordinates are

integral, and the distance between two consecutive points
is restricted. The first requirement is practical since in
protein structures, coordinates are typically specified to a
fixed precision (e.g. three decimal places in protein struc-
tures [24]), and can be trivially scaled up to integral values.
Similar assumptions are made in Euclidean problems such
as the Euclidean TSP [25]. The second requirement like-
wise does not add any restriction to the problem of protein
structure alignment, since there is a natural upper bound
(∼3.8Å) to the distance between two Cα atoms. In this
case, the following results hold.

– Given a polynomial time algorithm for finding a
largest alignment of RMSD below a threshold d, one
can efficiently compute an alignment of a given size �

which minimizes the RMSD (Theorem 7). (Since the
other direction is easy, this shows that the two
problems are of similar difficulty.)

– The structural alignment problem under the RMSD
is solvable exactly in polynomial time (Theorem 10).

Preliminary
Notations and definitions
A protein structure for alignment purpose is modeled
as a finite, ordered sequence of three dimensional (3D)
points. Hence, a structure of n residues is written as
(p1, p2, ..., pn), where each point pi ∈ R3. In the ‘Results
assuming integral coordinates and restricting distance
between points’ section, we will further assume each pi to
be integral. We write P′ ⊆ P iff P′ is a subsequence of P,
and write f : P �→ Q iff f is a mapping which maps points
in the sequence P to points in the sequence Q.
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Problem statements
We now state our problems. The main problem we con-
sider is the largest common point set (LCP) problem
under the RMSD, a well-known problem in protein struc-
ture alignment. In the LCP, the objective is to find a
mapping of the largest cardinality where the RMSD of
the matched points is no more than a given threshold
(Table 1).
We do not require the optimal superposition of P and

Q in the output, since that can be computed from P′, Q′,
and f in linear time [26]. We refer to f as an alignment. An
alignment can be sequential or non-sequential: an align-
ment is sequential iff for any two points pi1 , pi2 ∈ P′,
where the corresponding f (pi1) = qj1 and f (pi2) = qj2 ,
we have i1 < i2 iff j1 < j2. Otherwise the alignment is
non-sequential. The LCP problem which requires align-
ments to be sequential is said to be sequential, otherwise
it is non-sequential. We mainly discuss sequential align-
ment in this paper. The techniques developed can be easily
adapted to the non-sequential case. Given two equal-sized
sequences P′ = (p1, . . . , pn) and Q′, together with a bijec-
tion f between P′ and Q′, the root mean square deviation
(RMSD) is defined as

RMSD(P′,Q′) = min
t

√∑
1≤i≤n ||t(f (pi)) − pi||2

n
, (1)

where t is a rigid transformation. The RMSD, with its cor-
responding transformation t, can be computed in linear
time [26].
A natural variant of the LCP problem is to minimize the

RMSD instead of maximizing the size of the mapping, as
follows. Given an integer �, find subsequences of size �

of the input, such that the RMSD between the points of
the subsequences is minimized. We call this problem the
minimum aligned distance (MAD) problem (Table 2).
Clearly, if the MAD problem is solvable in polynomial

time, then the LCP problem is solvable in polynomial
time. However, the other direction is unclear. Theorem 7
will show that for P and Q of integral coordinates, if the
LCP problem is solvable in polynomial time, then the
MAD problem is solvable in polynomial time.

Table 1 Largest Common Point (LCP) set problem
definition under RMSD

LCP problem by the RMSDmeasure

Input: sequences P = (p1, . . . , pn), Q = (q1, . . . , qm) and distance

threshold θ ∈ R. Without loss of generality assumem ≥ n.

Output: (i) subsequences P′ ⊆ P, Q′ ⊆ Q, |P′| = |Q′|, and
(ii) bijection f : P′ �→ Q′ , fulfilling the following conditions:

(A) RMSD(P′ , f (P′)) ≤ θ ,

(B) the score l = |P′| is maximized.

Table 2 MinimumAligned Distance (MAD) problem
definition under RMSD

MAD problem by the RMSDmeasure

Input: sequences P = (p1, . . . , pn), Q = (q1, . . . , qm) and � ∈ I.

Without loss of generality assumem ≥ n.

Output: (i) subsequences P′ ⊆ P, Q′ ⊆ Q, |P′| = |Q′|, and
(ii) bijection f : P′ �→ Q′ , fulfilling the following conditions:

(A) |P′| = �,

(B) d = RMSD(P′ , f (p′)) is minimized.

We let P̂, Q̂, f̂, � and dopt denote an optimal P′, Q′, f, l
and d, respectively. The optimal rigid transformation for
superimposing P̂ and Q̂ is denoted T , and can be com-
puted from P̂, Q̂ and f̂. The symbol cmax

P denotes the
largest value in the coordinates of P, cmax

Q the largest value
in the coordinates of Q, and cmax = max{cmax

P , cmax
Q }, and

we know that cmax = O(n) for protein structures.

Results for general LCP andMAD
Complexity of the LCP andMADwhen the optimal
superposition is known
Since two point sequences with a known mapping can be
superimposed optimally under the RMSD in linear time
[26], it is natural to ask if the difficulty in LCP orMAD lies
solely in the combinatorial complexity of finding the opti-
mal subsets, i.e. P̂ and Q̂. Our results show the contrary: if
the optimal superposition T is known, both problems can
be solved in polynomial time.
We first consider the sequential case. Let dp,q = ||t(p) −

q||2 and let M[ i, j; k] denote the minimum squared sum
cost of k pair matches for the point sets (p1, p2, ..., pi) and
(q1, q2, ..., qj). If 1 ≤ k ≤ �, 2 ≤ i ≤ m and 2 ≤ j ≤ n, we
have a recurrence relation of

M[ i, j; k]= max

⎧⎨
⎩
M[ i − 1, j − 1; k − 1]+dpi,qj ,
M[ i, j − 1; k] ,
M[ i − 1, j; k]

⎫⎬
⎭

(2)

The base case of the recursion is obvious. Dynamic
programming can be employed to fill up the respective
M[ i, j; k] values. After all the values are filled, one can find
the maximum k, such that the squared sum is no more
than kθ2 for the LCP problem. The MAD problem can be
solved similarly.
The non-sequential case can be similarly solved using

the maximum-flow minimum-cost problem [27]. The fol-
lowing lemma states these results.

Lemma 1. If an optimal transformation T is known,
both the LCP problem and theMAD problem can be solved
in O(mn�) time.
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Complexity of the LCP andMADwhen the matching
between the point sets is known
We next ask if the difficulty in the LCP and MAD could
be due to the task of superimposing P and Q in an opti-
mal manner to identify the subsets P̂ and Q̂. To examine
this possibility, we remove the combinatorial task of exam-
ining each of the possible mapping between the points,
by assuming a bijection F which contains the optimal
mapping. (Note that this results in the problem known
as model superposition in structural biology.) Again, our
results show the resultant LCP and MAD problems to be
solvable exactly in polynomial time.
Assume that F is a bijection that maps points in P to

points in Q. Let P′ = (p′
1, . . . , p′

l) be the domain of F and
Q′ = (q′

1, . . . , q′
l) be the range of F. Without loss of gener-

ality assume that F is sequential, and hence F(p′
i) = q′

i.
One can exhaustively evaluate all the subsequences of

P′ for one with the least RMSD. However, since the num-
ber of such subsequences is exponential in l, this does not
immediately give us a polynomial time solution.
If a rigid transformation T for Q′ is given, and all

the pairs (p′
i, q′

i), 1 ≤ i ≤ l are sorted according to
the value ||T(p′

i) − q′
i||, the MAD problem is then to

choose the first � pairs from (p′
i, q′

i), 1 ≤ i ≤ l, and
the LCP problem is to choose the first � pairs, such
that RMSD((p′

1, ..., p′
�), (q

′
1, ..., q′

�)) ≤ θ and � = l or
RMSD((p′

1, ..., p′
�, p

′
�+1), (q

′
1, ..., q′

�, q
′
�+1)) > θ . This gives

us an incentive to obtain a total ordering of ||T(p′
i) − q′

i||,
which will allow us to solve theMAD problem by selecting
the first � pairs in the ordering. The set of transformations
which produce the same total according to ||T(p′

i) − q′
i||,

yield the same result for the MAD problem, and therefore
these transformations are equivalent. This enables us to
design a discrete version of the problem.
For clarity, we first present an algorithmwith only trans-

lation.

With translations only
Consider two pairs (p′

i, q′
i) and (p′

j, q′
j). The transforma-

tions T to separate the two types of transformations that
||T1(q′

i) − p′
i|| > ||T1(p′

j) − q′
j|| and ||T2(q′

i) − p′
i|| <

||T2(p′
j) − q′

j|| are the transformations where

||T(q′
i) − p′

i||2 − ||T(p′
j) − q′

j||2 = 0. (3)

Let • denote dot product. If the transformation is a
translation t, we have

||T(q′
i) − p′

i||2 − ||T(q′
j) − p′

j||2
= ||q′

i − p′
i − t||2 − ||q′

j − p′
j − t||2

=
∑

v=x,y,z
(vq′

i
− vp′

i
− vt)2 −

∑
v=x,y,z

(vq′
j
− vp′

j
− vt)2

= ||q′
i − p′

i||2 − ||q′
j − p′

j||2
−2t • ((q′

i − p′
i) − (q′

j − p′
j)) = 0 (4)

Consider the space of all translation vectors in R3, and
consider each vector as a point in this space (not the space
that P and Q are in). The values that the variable t in
Equation 4 may take form a plane in this translation space.
The plane partitions the translation space into two types
of translations, T1 and T2 say, where ||T1(q′

i) − p′
i|| >

||T1(p′
j) − q′

j|| and ||T2(q′
i) − p′

i|| < ||T2(p′
j) − q′

j||. Since
there are l pairs, there are O(l) planes, which partition the
space into O(l3) cells.
The translations in each cell result in the same ordering

of the pairs with respect to ||T(p′
i)−q′

i||. For each cell, this
total order can be obtained in O(l) time from any given
total order of its neighbor cells, since the change is O(1).
Therefore, the MAD solution can be obtained in amor-
tized time O(l) for each cell, and the LCP solutions thus
can be obtained in time O(l2). Hence the total runtime
is of O(�4) for the MAD problem, and O(�5) for the LCP
problem of translations, with the given mapping F.

With rigid transformations
The rigid transformations which separate the two rela-
tions ||T1(q′

i) − p′
i|| > ||T1(p′

j) − q′
j|| and ||T2(q′

i) − p′
i|| <

||T2(p′
j) − q′

j|| are as in Equation 3.
Suppose the rigid transformations T is composed of a

rotation R and a translation t.

||T(q′
i) − p′

i||2 − ||T(q′
j) − p′

j||2
= ||R(q′

i) − p′
i − t||2 − ||R(q′

j) − p′
j − t||2

= ||R(q′
i) − p′

i||2 − ||R(q′
j) − p′

j||2
−2t•[ (R(qi) − pi) − (R(qj) − pj)] (5)

A rotation matrix contains three variables, which is
specified using three angles, say α1, α2, α3, each from −π

to π . Let ri = cosαi, si = cosαi, then Equation 5 can
be considered as a polynomial of nine variables in degree
six. The nine variables are ri, si and the three variables for
translation. In total, there are O(l) such polynomials.
We know the following theorem from the literature.

Theorem 2. [7,28] Given a set of k polynomials, P =
{f1, ..., fk}, where each polynomial has a maximum degree
of s, contains at most r variables, and in addition all the
coefficients are rational, then all the sign conditions can
be determined by O(k(k/r)rsO(r)) arithmetic operations. A
sign condition V is the vector of signs for some point u ∈
Rk; that is, V = (sign(f1(u)), ..., sign(fk(u))). Two points
u,u′ ∈ Rk are equivalent if their sign condition vectors are
the same.

Each sign vector represents the transformations of the
cell it belongs to, and it determines a total order of the
pairs. Similar as in the case of translation, with Theorem 2,
we have
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Theorem 3. Given a bijection F : P′ → Q′, where |P′| =
l, then the MAD problem can be solved in O(l10) time and
the LCP problem can be solved in O(l11) time.

Results assuming integral coordinates and
restricting distance between points
One possible contributing factor to the difficulty of

the LCP problem could be its flexibility in allowing
input coordinates of any arbitrary precision. This is
because intuitively, this arbitrariness in the precision
introduces the burden of examining the solution space
in an unbounded manner. However, such an exhaustive
search is not necessary for the purpose of protein struc-
ture comparison, since coordinates of protein structures
are specified only to three decimal places in the commonly
used PDB format.
In this section, we restrict the precision in which the

input coordinates may be specified. Without loss of gen-
erality, we assume that the input coordinates are given in
integers, since numbers of any fixed precision can be triv-
ially scaled up to integral values. This assumption is used
to obtain Lemma 5 and Theorem 7.
We also place an upper bound on the distance between

consecutive points according to the structure of proteins.
As a result, cmax is bounded by n, as follows.
Points drawn from protein structures have upper

bounds on their diameters because they are connected,
and many are globular.

- For a connected structure, the points are at most
O(n) distance apart. That is, cmax is of O(n).

- For a globular structure, the points are at most
O(n1/3) distance apart [14]. That is, cmax is of
O(n1/3).

Given a point p, let the x coordinate of p be denoted xp.
Similarly, we can define yp and zp. Without loss of gener-
ality, we assume that the first point of a protein structure
is at the origin. The largest coordinate of a protein is
bounded by O(n), and the largest coordinate of a globular
protein structure is bounded by O(n1/3); that is

max
p∈P,v=x,y,z

|vp| = O(n), if P is a protein structure (6)

max
p∈P,v=x,y,z |vp|=O(n1/3), if P is a globular protein structure

(7)

Our results show that, under these two conditions,

1. the LCP problem is of similar difficulty as the MAD
problem, and

2. both problems can be solved exactly in polynomial
time.

Properties of protein structures
Upper and lower bounds of RMSD
We first establish some bounds to the RMSD. The mini-
mum RMSD is zero if T brings Q̂ to coincide exactly with
P̂. This case is referred to as the exact matching, which
can be easily solved by the method in [29]. However, if we
assume the RMSD to be non-zero, then a lower bound and
an upper bound for it can be computed.
Let π be a permutation of {1, ..., �}. For the sequence

X = (x1, . . . , xn), let dXi,j, 1 ≤ i, j ≤ n, denote the Euclidean
distance between xi and xj. The following results, which
are proven in the Appendix, can be obtained.

Lemma 4.

1√
2�

√∑��/2�
i=1

|dP̂π(i),π(i+��/2�) − dQ̂π(i),π(i+��/2)�|2

RMSD(P̂, Q̂).

Lemma 5 (Lower bound). If RMSD(P̂, Q̂) = 0, then
RMSD (P̂, Q̂) ≥

√
12c2max−

√
12c2max−1√

2�
.

Lemma 6 (Upper bound). RMSD(P̂, Q̂) ≤ 4
√
3cmax.

Using an algorithm for the LCP to solve the MAD problem
Suppose there is a polynomial time algorithm for solving
the LCP problem. To use it to solve the MAD prob-
lem, we assume that dopt ∈[ l,u], for some real l and u,
l ≤ u. We use a binary search strategy in the interval
[ l,u], as shown in Table 3, to search for the minimum

Table 3 Employing an algorithm for the LCP problem to
solve theMAD problem

Input: sequences P = (p1, . . . , pn), Q = (q1, . . . , qm) and � ∈ I.

Without loss of generality assumem ≥ n.

Output: (i) subsequences P′ ⊆ P, Q′ ⊆ Q, |P′| = |Q′|, and
(ii) mapping f : P′ �→ Q′ , fulfilling the following conditions:

(A) |P′| = �,

(B) d = RMSD(P′ , f (p′)) is minimized.

1. l ← 0, u ← �cmax

2. m ← 1/2(l + u)

3. Call LCP to solve the instance (P,Q,m).

4. If the LCP solution has size no less than �

u ← m

else

l ← m

5. If u − l ≤
√

12c2max−
√

12c2max−1√
2�

,

Output the most recent LCP solution of size no less than �.

Otherwise, repeat Steps 2-5.
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value such that the LCP solution size is �. However, the
search will not terminate if an arbitrary accuracy of the
dopt value is required. We prove below that the accuracy
of dopt can be defined by polynomially many bits. Given
two threshold t1 and t2, assume that we obtain two dif-
ferent LCP solutions, and the RMSD values of the two
solutions are θ1 and θ2, where θ1 > θ2. Similar to the argu-
ments in Lemma 5, the difference between θ1 and θ2 is
at least

√
12c2max−

√
12c2max−1√

2�
. Therefore if two consecutive

binary search operators have the difference of the thresh-

old values below
√

12c2max−
√

12c2max−1√
2�

, the search can be
terminated. The values of l and u are the same as in the
previous subsection. Hence,

Theorem 7. Solving the MAD problem is equivalent to
solving O(log �cmax) instances of the LCP problem.

Since the reduction from the LCP problem to the MAD
problem is obvious, we conclude that the two problems
are of similar difficulty.

Polynomial time algorithm
We now show that under the two conditions, the LCP and
MAD problem can be solved in polynomial time.
As shown in the ‘Complexity of the lCP and mAD

when the optimal superposition is known’ section, when
the optimal superposition is known, there are polynomial
time algorithms for LCP and MAD. We consider an enu-
meration of all the possible superpositions. Under the two
conditions, we claim that there are at most polynomially
many such superpositions.
First, if we know P̂ and Q̂, then optimal superposition

can be computed in the following two steps:

1. Translate P̂ and Q̂ such that their centroids are at the
origin.

2. Then, rotate Q̂ to find the superposition with the
minimum distance [26].

Denote the translations to obtain the optimal solution
for P and Q as tP and tQ, respectively, and denote the
optimal rotation by R̂.
We now show that one needs to examine only poly-

nomially many translations and rotation combinations to
discover the values for tP, tQ, and R̂. These numbers can
be effectively bounded by n when properties of protein
structures are taken into account. We first describe these
properties.

Number of translations

The centroid of P̂ is
∑

p′∈P̂ p′
�

. To bring P̂ to origin, the

translation is −
∑

p′∈P̂ p′
�

. Clearly, all the three coordinates
of − ∑

p′∈P̂ p′ are integers since all the coordinates of the

points in p ∈ P are integers. The value of x-coordinate
of −

∑
p′∈P̂ p′
�

is bounded by −
∑

p′∈P̂ xp′
�

≤
∑

p′∈P̂ cmax
P

�
≤

cmax. Similarly, all the three coordinates of the translation
−

∑
p′∈P̂ p′
�

are bounded within the interval [−cmax, cmax].
To obtain an optimal MAD solution, the translation on P̂
must be in the form of I

�
, where I is an integer. Since it is

possible to examine all the possible values for I, we have
the following result.

Lemma 8. tP, tQ ∈ {I/�| − �cmax ≤ I ≤ �cmax}3.

Number of rotations
With the centroids of P̂ and Q̂ translated to the origin, we
proceed to identify the rotation in our algorithm. Let XP
denote the vector 〈xp1 , ..., xp�

〉 for structure P. Similarly we
define YP and ZP.
Let P̂t = (p′

1 − t, ..., p′
� − t) and Q̂t = (q′

1 − t, ..., q′
� − t),

p′
i ∈ P̂, q′

i ∈ Q̂.
Given P̂ and Q̂, to compute the rotation R̂, the first step

is to create the 3 × 3 matrix, which is (from [26])

M =

⎛
⎜⎜⎝

XP̂tP
• XQ̂tQ

XP̂tP
• YQ̂tQ

XP̂tP
• ZQ̂tQ

YP̂tP
• XQ̂tQ

YP̂tP
• YQ̂tQ

YP̂tP
• ZQ̂tQ

ZP̂tP
• XQ̂tQ

ZP̂tP
• YQ̂tQ

ZP̂tP
• ZQ̂tQ

⎞
⎟⎟⎠ (8)

Each above matrix is decomposed by the singular value
decomposition, and a rotation matrix is produced here-
after.
We know that the coordinate of each point in the protein

is within the interval [−cmax, cmax]. This implies that for
U = X,Y ,Z and V = X,Y ,Z,

UP̂tP
• VQ̂tQ

=
�∑

k=1
(pi,k − tP)(qj,k − tQ) ≤

�∑
k=1

(2cmax)
2

≤ 4�c2max.

Also, it is clear that UP̂tP
• VQ̂tQ

is in the form of I/�2,
where I is an integer. The matrix in Equation 8 has nine
elements; we denote e ∈ M if e is one of these elements.
The following lemma follows.

Lemma 9. For each element e ∈ M in Equation 8, e ∈
{I/�2| − 4�3c2max ≤ I ≤ 4�3c2max}.

Polynomial time algorithm
To compute the optimal MAD solution, we first enumer-
ate all the possible translations and rotations. A solution is
computed for each translation and rotation combination
according to Lemma 1. An optimal solution can be chosen
from these computed solutions (Table 4).
According to Lemma 8, the optimal translation tP and

tQ must be within {I/�|−�cmax ≤ I ≤ �cmax}3. To find the
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Table 4 A polynomial time algorithm for theMAD problem

Input: sequences P = (p1, . . . , pn), Q = (q1, . . . , qm) and � ∈ I.

Without loss of generality assumem ≥ n.

Output: (i) subsets P′ ⊆ P, Q′ ⊆ Q, |P′| = |Q′|, and
(ii) mapping f : P′ �→ Q′ , fulfilling the following conditions:

(A) |P′| = �,

(B) d = RMSD(P′ , f (p′)) is minimized.

1. For each translation t ∈ {I/�| − �cmax ≤ I ≤ �cmax}3,
For each 3 × 3 matrixM, where ∀e ∈ M, e ∈ {I/�2|−,

{4�3c2max ≤ I ≤ 4�3c2max}
Compute rotation matrix R fromM.

Q ← RQ − t.

Apply an algorithm for the case where the superposition

is known to P andQ (as discussed in the ‘Complexity Of

The LCP And MAD When The Optimal Superposition Is

Known’ section), and denote the solution MAD(P,Q).

2. Output the MAD(P,Q) of the smallest RMSD as the solution.

optimal rotation matrix, it suffices that we try all the pos-
sible values for each entry in Equation 8. Since there are
�27c18max matrices, the number of total transformations to
examine is bounded by O(�33c34max). It takes time O(mn�)

to identify the MAD solution for each transformation. An
LCP solution can be obtained by iterating � from 1 to
min{m, n} for the MAD problem.
The running time consists of the productions of three

parts: the number of possible translations, the number of
possible rotation matrix, and the running time for given
a rotation matrix and a translation combination (that is,
the running time when then transformation is known).
These numbers are bounded by cmax, which is bounded by
m when we consider the properties of protein structures.
Likewise, cmax is polynomial with respect to the input size
if coded in unary.

Theorem 10. The MAD problem can be solved in
O(�34m25n) time for protein structures, and in O(�34m9n)

time for globular protein structures. The LCP problem can
be solved in O(�35m25n) time for protein structures, and in
O(�35m9n) time for globular protein structures. Both the
MAD and LCP problems are pseudo-polynomially solvable
for general point sets.

Conclusions
We studied the LCP problem under the RMSD in this
paper. As it turns out, the difficulty of the problem does
not lie in its combinatoric aspect or its structural superpo-
sition aspect alone. That is, if the problem is hard, then it
must be a consequence of both aspects. Our results show
that if one is allowed to compromise on one of the aspects,
then the problem is solvable exactly in polynomial time.

Regrettably, we do not see how the optimal solution can
be obtained in both cases.
On the other hand, we showed an encouraging result:

There is a polynomial time algorithm which solves the
problem optimally, if one restricts the input coordinates in
the problem to be integral, and places a limit on the dis-
tance between consecutive points. These requirements do
not pose any restriction to typical uses in the analysis of
protein structures, since protein structures are specified
only to a fixed precision in practice, and there is an upper
bound to the distance between protein residues.
One problem is that our proposed polynomial time

algorithm remains high in time complexity. We hope
that the present work will provide the foundation for
future efforts to obtain algorithms with lower runtime
complexities.

Appendix
In this Appendix, we include the proofs of the results in
the paper which have been omitted to enhance readability.

Lemma 4.

1√
2�

√∑��/2�
i=1

|dP̂π(i),π(i+��/2)� − dQ̂π(i),π(i+��/2)�|2

≤ RMSD(P̂, Q̂).

Proof. Without loss of generality, we just show that
1√
2�

√∑��/2�
i=1 |dP̂i,i+��/2� − dQ̂i,i+��/2�|2 ≤ RMSD(P̂, Q̂).

Let
ri = ||T (qi) − pi||2 + ||T (qi+��/2�) − pi+��/2�||2,
ui = 〈pi, pi+��/2�〉, and
vi = 〈qi, qi+��/2�〉, where 1 ≤ i ≤ ��/2�.

First, we prove that ri ≥ |ui − vi|2/2, for 1 ≤ i ≤ ��/2�.
We first superimpose ui and vi to optimize the squared
sum; that is, to find transformation T such that ||T(qi) −
pi||2 + ||T(qi+��/2�) − pi+��/2�||2 is minimized. The cen-
troids have to coincide to minimize the squared distance.
Assume the centroids are at the origin and that the angle
between

−−−→
(o, pi) and

−−−→
(o, qi) is α, where o is the origin, then

by trigonometry

||T(qi) − pi||2 + ||T(qi+��/2�) − pi+��/2�||2
= 2[ (1/2 × ||ui||)2 + (1/2 × ||vi||)2

− 2×1/2||ui||×1/2||vi|| × cosα]

≥ (||ui|| − ||vi||)2
2

ri is the squared distance under transformation T , which
may not be optimal for superimposing ui and vi. There-
fore,
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ri ≥ (||ui|| − ||vi||)2
2

Putting things together, we have

RMSD(P̂, Q̂) ≥
√
r1 + . . . + r��/2�

�

≥
√

(u1 − v1)2 + . . . + (u��/2� − v��/2�)2
2�

≥ 1√
2�

√√√√��/2�∑
i=1

|dP̂i,i+��/2� − dQ̂i,i+��/2�|2

Lemma 5. If RMSD(P̂, Q̂) = 0, then RMSD(P̂, Q̂) ≥√
12c2max−

√
12c2max−1√

2�
.

Proof. If RMSD(P̂, Q̂) is non-zero, then there is at least
a pair of indices i and j, such that ||dP̂i,j − dQ̂i,j || > 0.
According to Lemma 4,

RMSD(P̂, Q̂) ≥ 1√
2�

√
|dP̂i,j − dQ̂i,j |2 = |dP̂i,j − dQ̂i,j |√

2�

>=
√
12c2max − √

12c2max − 1√
2�

.

Lemma 6. RMSD(P̂, Q̂) ≤ 4
√
3cmax.

Proof. Denote the furthest point to the origin in P as
pmax, and the furthest point to the origin in Q as qmax.
Then,

� × RMSD2(P̂, Q̂)

=
�∑

i=1
||T (qi) − pi||2

≤
�∑

i=1
(||qi − pi||)2

≤
�∑

i=1
max{||qmax − pmax||2, ||qmax + pmax||2}

≤ �max{||qmax − pmax||2, ||qmax + pmax||2}
≤ �(2

√
(cmax+cmax)2+(cmax + cmax)2+(cmax+cmax)2)

2

= 48�c2max
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