
Federico et al. Algorithms for Molecular Biology 2012, 7:20
http://www.almob.org/content/7/1/20

RESEARCH Open Access

Direct vs 2-stage approaches to structured
motif finding
Maria Federico1, Mauro Leoncini1,2*, Manuela Montangero1,2 and Paolo Valente1

Abstract

Background: The notion of DNAmotif is a mathematical abstraction used to model regions of the DNA (known as
Transcription Factor Binding Sites, or TFBSs) that are bound by a given Transcription Factor to regulate gene expression
or repression. In turn, DNA structuredmotifs are a mathematical counterpart that models sets of TFBSs that work in
concert in the gene regulations processes of higher eukaryotic organisms. Typically, a structured motif is composed of
an ordered set of isolated (or simple) motifs, separated by a variable, but somewhat constrained number of “irrelevant”
base-pairs. Discovering structured motifs in a set of DNA sequences is a computationally hard problem that has been
addressed by a number of authors using either a direct approach, or via the preliminary identification and successive
combination of simple motifs.

Results: We describe a computational tool, named SISMA, for the de-novo discovery of structured motifs in a set of
DNA sequences. SISMA is an exact, enumerative algorithm, meaning that it finds all the motifs conforming to the
specifications. It does so in two stages: first it discovers all the possible component simple motifs, then combines
them in a way that respects the given constraints. We developed SISMA mainly with the aim of understanding the
potential benefits of such a 2-stage approach w.r.t. direct methods. In fact, no 2-stage software was available for the
general problem of structured motif discovery, but only a few tools that solved restricted versions of the problem. We
evaluated SISMA against other published tools on a comprehensive benchmark made of both synthetic and real
biological datasets. In a significant number of cases, SISMA outperformed the competitors, exhibiting a good
performance also in most of the cases in which it was inferior.

Conclusions: A reflection on the results obtained lead us to conclude that a 2-stage approach can be implemented
with many advantages over direct approaches. Some of these have to do with greater modularity, ease of
parallelization, and the possibility to perform adaptive searches of structured motifs. As another consideration, we
noted that most hard instances for SISMA were easy to detect in advance. In these cases one may initially opt for a
direct method; or, as a viable alternative in most laboratories, one could run both direct and 2-stage tools in parallel,
halting the computations when the first halts.

Keywords: Structured motif, TFBS discovery, Combinatorial algorithms

Background
Understanding the complex mechanisms that regulate
gene expression is a pivotal problem in molecular biology.
Gene transcription [1] starts when one or more regulatory
proteins bind DNA regulatory elements, which are mostly
located in the promoter region nearby the transcription

*Correspondence: leoncini@unimore.it
1Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di
Modena e Reggio Emilia, Via Campi 213/b, 41125 Modena, Italy
2Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Via
Moruzzi, 1, 56124 Pisa, Italy

start site (TSS) of genes, or also further apart in eukaryotic
organisms (e.g. enhancers, silencers). In eukaryotes, DNA
binding proteins are called transcription factors (TFs) and
regulatory elements, to which they bind, are known as
transcription factor binding sites (TFBSs).
In lower eukaryotes TFBSs are usually short DNA

strings (5-25 base pairs long) bound by a single TF,
that frequently appear, with possibly some mutations,
upstream of the TSS in the proximal promoter region of
co-regulated genes.

© 2012 Federico et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Federico et al. Algorithms for Molecular Biology 2012, 7:20 Page 2 of 16
http://www.almob.org/content/7/1/20

In higher eukaryotic organisms, transcription regula-
tion is more complex and TFBSs are more difficult to
characterize [2]. There may be multiple binding sites for
a single TF in a single gene’s promoter region; there can
be great variability in the binding sites of a single TF; the
regulatory elements may be located also several kilobases
away from the TSS, either upstream or downstream or in
the introns of the genes that they regulate [3], and in this
case they are often organized in functional groups (called
cis-regulatory modules) [2] bound by several interacting
TFs in a cooperative or antagonistic way.
Being able to identify TFBSs is crucial to our under-

standing of the mechanisms that regulate gene expression
(e.g., chronology and cell-specificity of transcription [4]),
and of the functions of individual genes regulated by
newly discovered TFBSs [2]. Also, mutations in TFBS
underlie several degenerative human diseases (e.g., all
forms of cancer) and constitute a substantial component
of the phenotypic variability within and across species [5].
Structural and functional information on mechanisms

of interaction between TFs and their binding sites are pro-
vided by experimental techniques, which are costly and
time-consuming.

TFBS discovery as an algorithmic problem
The identification of (possible) functional sites can be
formulated as an algorithmic problem, provided a math-
ematical abstraction is given to model TFBSs. Two of
the most popular such models are Position Specific Score
Matrices (PSSM) and Hamming distance (HD) models
(see, e.g., [6,7]). Here we will adopt the HD model, which
we now briefly recall.
In theHDmodel, a simplemotif Mw is given by a wordw

(over the DNA alphabet), sometimes called the consensus,
together with an integer e, 0 ≤ e < |w|. The occurrences
of Mw are those words v whose Hamming distance from
the consensus is bounded by e, i.e., dH(w, v) ≤ e. Note
that e > 0 accounts for possible mutations (here only
nucleotide substitutions) in functional sites relative to the
same TF. Figure 1a shows examples of simple motifs and
simple motif occurrences.

Computationalmotif discovery (or motif finding) can be
defined as the task of inferring the mathematical abstrac-
tions subject to the identification of the occurrences (i.e.,
the potential binding sites) in the input sequences. The
typical input to a motif discovery program under the HD
model includes a pair (�, e), which describes the length of
the consensus and the maximum substitutions allowed in
the occurrences, respectively.
Motif discovery is a very difficult problem [8], since the

space of possible occurrences may be huge. The inverse
problem, i.e., finding the occurrences given a motif defi-
nition, is called motif search and is instead comparatively
much easier than discovery.
Simple motifs are typically used to represent TFBSs in

lower eukaryotes. When more than one binding site is
involved in gene regulation, as in higher eukaryotes, their
collective formal description is more elaborate. Here, we
are interested in formal models of so-called structured
motifs, which can be simply defined as sets of simple
motifs, often called boxes, whose occurrences, in the input
DNA fragments, must satisfy given order and distance
constraints. The input to a structured motif finder can be
succinctly described using template strings:

(�1, e1)−[d1,D1]−(�2, e2) − . . .

−(�b−1, eb−1)−[db−1,Db−1]−(�b, eb)

where, for all admissible j and k, �j and ej constrain the
motifs that can occur as box j according to the HD model,
while dk and Dk are lower and upper bounds on the num-
ber of nucleotides between box k and box k + 1. Figure 1b
illustrates the concept in case of b = 3.

Focus of the paper
There is an already huge literature on motif discovery
(see, e.g., [6,8-19] and also the references contained in
the survey papers [20,21]). However, for our purposes
the proposed algorithmic solutions fall into two classes:
(1) optimization algorithms (either deterministic or prob-
abilistic), and (2) enumerative, exact algorithms. Algo-
rithms of the first class seek motifs that optimize a certain

Figure 1 Simple and structured motifs. Part (a): some DNA sequences with instances of the two simple motifs GATAAG (one base substitution
tolerated) and TATAAAA (up two base substitutions tolerated), highlighted in blue and red, respectively. Part (b): three instances of a structured
motif (6, 1)−[2, 4]−(6, 1)−[3, 5]−(7, 2).

Federico et al. Algorithms for Molecular Biology 2012, 7:20 Page 3 of 16
http://www.almob.org/content/7/1/20

scoring function, usually exploring only a limited por-
tion of the space of all possible motif candidates (see
[6,9,10,22] for influential works). On the other hand, enu-
merative algorithms exhaustively search the motif spacea
[12,14,16,23,24].
A fundamental component of exact methods is what

we can term the enumeration engine, i.e., the algorithm
adopted to generate all the possible candidate motifs to
be later evaluated on some statistical basis (for another
example, see [25]). Actually, some exact motif finding
tools have been proposed which are just enumeration
engines, simply returning all the motifs that satisfy the
input constraints [7,26-28]. Clearly, an appraisal of any
such engine depends on its computational efficiency only.
The availability of enumeration tools is useful both

because they can be taken as building blocks for more
sophisticated finders and because they inspired (and still
inspire) research in the whole field of exact methods. In
this respect, it is worth observing that the tool which best
behaved in the now famous assessment by Tompa et el.
[29], namely Weeder, borrows its enumeration engines
from [7].
In this paper we concentrate our attention on enumer-

ative algorithms for structured motif discovery in a set
of input DNA fragments. In particular, we focus on enu-
meration engines and base our analysis on running time
and (to a lesser extent) memory consumption. We pay no
attention to the “quality” of the results, simply because
the output only depends on the input constraints posed
to the motifs being sought. Running time is instead espe-
cially critical since faster enumeration leaves more room
for post processing (i.e., picking the motifs deemed more
likely to represent functional sites).
Before describing the contribution of our work, we ana-

lyze in more details the results presented in the literature
that deal with enumeration engines for structured motif
discovery.

Related work
Existing algorithms are essentially based on one of two
possible approaches: (1) directly explore the search space
of structured motifs, or (2) first extract the simple motifs
that may occur as boxes (using any available simple motif
finder) and then “assemble” them into structured motifs
that satisfy box order and distance constraints. We shall
refer to the latter as to the 2-stage approach.
A well-known potential advantage of directly explor-

ing the space of structured motifs is that the combined
boxes, together with the distance constraints, may be
strong enough to quickly emerge, possibly together with
few others spurious structures, even though each single
box is a weak signal (see, e.g., [15]). We point out that the
most efficient direct approach algorithmsmakes use of the
(generalized) suffix tree data structure [30,31].

The 2-stage approach was first mentioned by Marsan
and Sagot [32], who nonetheless deemed it impractical
due to the high resource consumption. Recently, how-
ever, it was re-considered by Zhou et al. [28], who
provided much tighter theoretical upper bounds on the
runtime and space complexity. They designed the Ecomp
algorithm and showed it to be more efficient than
more sophisticated exact methods in their experimental
settings.
Some available exact motif finders require that at least

one instance of the motif be exact, i.e., that it actually
appears in one of the input sequences. This leads to a
reduction of the motif search space with ensuing time and
space savings. This simplified version of the problem is
called Frequent (Structured)Motif Discovery problem [26].

SMILE, RISO and RISOTTO
SMILE [32] is a family of algorithms designed to solve
slightly different variants of the structured motif discov-
ery problem on set of input sequences. SMILE extends to
structured motifs the algorithmic ideas on simple motif
enumeration presented in [7]b. To explore the space of
possible structured motifs, SMILE uses a generalized suf-
fix tree of the input sequences together with a (virtual)
lexicographic tree of all possible simple motifs. Improve-
ments to SMILE are presented by Carvalho et al. [33].
Their RISO algorithm exhibits an exponential time and
space gain over SMILE in the worst case. RISO works on
a variation of the generalized suffix tree (called general-
ized factor tree) [34], built only up to the box length level,
with some extra information used for fast update of the
tree. RISO’s computational complexity is exponential with
respect to the number of boxes and their lengths, but it
does not depend on inter-box distances, thanks to the use
of box links.
A further improvement is achieved by RISOTTO [27],

although only on the average, thanks to it’s ability to
quickly detect dead ends (i.e., words that cannot possi-
bly be extended to a valid motif). In practice, RISOTTO
is more than twice faster than RISO and, to the best of
our knowledge, also the most efficient algorithm for exact
enumeration of structured motifs composed of any num-
ber of boxes. For this reason, we will take RISOTTO as our
primary competitor in the experimental tests.

ECOMP
Ecomp is a general, 2-stage algorithm that uses Mitra-
count [15] to find all simple motifs and the starting
positions of all their occurrencesc. In the second step,
the algorithm looks for dyads by checking all pairs
of occurrences of simple motifs, keeping and count-
ing only those satisfying the distance constraint. At
the end, Ecomp outputs only the dyads satisfying the
quorum constraint.

Federico et al. Algorithms for Molecular Biology 2012, 7:20 Page 4 of 16
http://www.almob.org/content/7/1/20

Unfortunately, Ecomp is fully described and tested only
for dyads and source code is apparently not available.

ExMotif
The 2-stage approach is also used by EXMOTIF [26] to
solve the frequent structured motif extraction problem.
EXMOTIF’s main data structures are lists that store the
positions of patterns appearing in the sequences. These
lists are repeatedly intersected in order to find motifs
that satisfy the input constraints. The output produced
by EXMOTIF includes the structured motifs satisfying the
quorum constraint and only the positions of their exact
occurrences. The computational cost of EXMOTIF, as
reported in [26], is exponential with respect to the number
and the length of boxes.

Results
Our contribution is twofold. We present a novel 2-
stage algorithm, called SISMA, that enumerates all the
structured motifs conforming to input specifications.
More precisely, we describe two different software tools
that implement SISMA’s ideas. The first version, called
SISMA SMILE, solve the “unconstrained” enumeration
problem, while the second one, named SISMA SPELLER,
addresses the frequent structured motif discovery prob-
lem. We compare the performances of SISMA SMILE
(resp., SISMA SPELLER) against those of RISOTTO (resp.
EXMOTIF) on a comprehensive dataset composed of
both synthetic and real biological data. The experimental
results show that our tools are competitive in enumerating
spaces of structured motif candidates.
We also try to go one step further and reflect on the rel-

ative merits of direct vs 2-stage approaches for structured
motifs finding. The latter enjoy some potential design
advantages, such as modularity and ease of parallelization
(see the concluding section for more on these aspects).
However, the argument of computational inefficiency has
often been used to discourage their active use. From our
experiments here we can not devise strong arguments in
favor of any of the two approaches. It is true that, in some
circumstances, direct methods can explore spaces which
are beyond the capabilities of a 2-stage algorithm. How-
ever, in other cases our 2-stage approach software results
much faster than the competitor direct tool. In the con-
cluding section we will give some guidelines (depending
on parameter sets) to possibly assist the users to choose
the most suitable tool for the problem instances at hand.

Methods
In this section we describe the implementation of SISMA
(“Successive Intersection of Simple Motifs Apart”), a
structured motif finder based on the 2-stage approach.
SISMA is an exact algorithm which takes in input the

following set of parameters:

1. the set of sequences, in Fasta format, where the
motifs must be found;

2. the number b ≥ 2 of boxes (simple motifs) which the
structured motifs will be made of;

3. an ordered set of b pairs of integers: (�i, ei),
i = 1, . . . , b, such that �i is the length of the ith box
and ei the corresponding number of admissible
errors;

4. for each pair of consecutive boxes, say the ith and
i + 1th ones, a pair of integers (di,Di) that specify the
minimum and maximum number of bases,
respectively, that may separate the two boxes,
i = 1, . . . , b − 1.

5. a value q ∈ (0, 1] (the so-called quorum) that
specifies the minimum fraction of input sequences
that must contain an instance for the structured
motif to be considered valid.

The output of the algorithm is made of all the possible
structured motifs that conform to input specifications.
SISMA is implemented in C++ and its source code is

available for download from http://algo.ing.unimo.it/mf/.

Basic implementation
SISMA stores simple and structured motifs using vector
data structures that make it possible to perform list inter-
sections and filtering operations (i.e., the distance and
quorum checks described below) in a very efficient way
(technical details can be found in Additional file 1).
In current implementations, SISMA comes in two ver-

sions, which will be referred to as SISMA SMILE and
SISMA SPELLER, solving the structured and the frequent
motif discovery problems, respectively.

Stage 1
SISMA SMILE first calls SMILE [32] for simple motif dis-
covery. To the best of our knowledge, SMILE is the only
tool available for download which is exact and that returns
the positions of all the occurrences of found motifsd.
SISMA SPELLER uses our implementation of the

SPELLER [7] algorithm, which returns simple motifs with
at least one exact match in the input sequences, together
with all their occurrences. We decided for a new SPELLER
implementation because, apparently, there is no available
tool with these characteristicse.
Independently of the simple motif finder adopted, the

output of the first stage is a set of simple motifs with asso-
ciated position lists of their occurrences, each one ordered
by increasing sequence indexes and increasing positions
within the sequence. Logically, motifs returned by stage 1
are classified into b subsets, denoted by Ki, i = 1, . . . , b,
such that m ∈ Ki if and only if m can be the ith box of
one of the structured motifs being sought. Each set Ki is
maintained as a vector data structure, each cell of which

http://algo.ing.unimo.it/mf/

Federico et al. Algorithms for Molecular Biology 2012, 7:20 Page 5 of 16
http://www.almob.org/content/7/1/20

in turns stores a pointer to a vector containing all occur-
rences of exactly one m ∈ Ki, ordered by increasing input
sequence index and increasing position in each sequence.
Observe that there is no filtering process of simple

motifs found in this stage, because there is apparently no
relations between significance of simple motifs and signif-
icance (or mere existence) of structured motif, as clearly
stated in [35]. In particular, structured motifs might exist
(and reach quorum) only because they contain weak sim-
ple motifs.

Stage 2
For i = 0, . . . , b, we will use the term i-prefix to denote
any structured motif made of i boxes that could possibly
be extended to a full structured motif conforming to the
problem specification.
In the second stage, which is divided in b steps, SISMA

builds prefixes of increasing length, starting from the
empty prefix in step 1 and ending with b-prefixes (i.e.,
full structured motifs) in step b. Basically, at generic
step i, SISMA considers all (i − 1)-prefixes p and all
motifs m ∈ Ki to assemble possible i-prefixes r = p −
(di,Di) − m. The computed i-prefixes are stored in a vec-
tor data structure, analogously to what is done with simple
motifs.
During a prefix assembly step, SISMA checks distance

and quorum constraints, in order to discard, as early as
possible, prefixes that could not possibly be extended to
full structured motifs.
Distance check: for each potential i-prefix r being built,

r = p−(di,Di)−m, and any sequence s, SISMAperforms a
binary search on the sorted occurrences ofm in s in order
to find the first occurrence that satisfies the minimum dis-
tance constraint. Then, all the subsequent occurrences of
m are considered, until one is found that violates the max-
imum distance constraint. In this way, SISMA builds all
occurrences of r.
Quorum check: the i-prefix r is discarded if its occur-

rences appear in less than q|S| input sequences. In fact,
it is obvious that prefix extension can only reduce the
eventual motif quorum.

Options
The basic implementation has been enhanced with some
options that might be used to have even more efficient
second stage runs, under some circumstances. Implemen-
tation details can be found in Additional file 1.

Box index selection option
When this option is selected, SISMA builds structured
motifs by considering boxes of increasing total number of
occurrences and not by increasing index order. In more
pictorial terms, the full (final) structured motifs are not

determined by assembling longer and longer prefixes but
rather longer and longer structured motif “subsequences”.
When using this option, before starting the b steps of

stage 2, SISMA computes the total number of simplemotif
occurrences in each set Ki, i = 1, . . . , b:

Bi =
∑

t:mt∈Ki

|occi,t|, (1)

where occi,t is the set of occurrences of motif mt ∈ Ki,
t = 1, . . . , |Ki|. SISMA then sorts the sets {Bi}i=1,...,b and
forms a list L with the corresponding box indexes, i.e., if
Li = j and Li+1 = k, then Bj ≤ Bk , i = 1, . . . , b−1. Then, it
uses the list L in stage 2 to determine the order with which
to add the boxes to the structured motifs being built.
This option allows to limit the number of useless inter-

mediate structured motifs (i-prefixes) that are generated
(i.e., those that eventually would be discarded, because
they either could not be extended to full b-boxes or would
not satisfy the quorum constraint). This is particularly
effective when the expected number of structured motifs
in the output is not large, which is likely to happen, e.g.,
when the box length is large and a small number of errors
are admitted, or simply when the number of boxes is large.
There is a trade off between the slowdown introduced to
store and handle extra information needed to implement
this option and the speedup obtained by reducing the
number of useless intermediate structured motifs. If the
output is large, the slowdown is predominant; in contrast,
if the output is small, speedup is predominant.
In practice, this option helped SISMA to drastically

reduce the out-of-memory failures, especially on synthetic
data.

Space-saving option
Sometimes the output to be generated is very large. This
happens, e.g., when the first stage has returned a huge
number of simple motifs occurrences. In turns, this can
be a consequence of the particular values of the input
parameters, such as very short motif lengths and/or rel-
atively small difference between length and number of
available errors. Under these circumstances, SISMA basic
implementation, which keeps all the intermediate motifs
(including the simple ones) in main memory, may fail due
to memory shortage.
To cope with this situation, especially on low memory

PCs, SISMA can be run with a specific option that pro-
duces the output in distinct slices, and that requires less
main memory to produce the output of each slice. Given
an integer v as the value of the space-saving option param-
eter, for i = 1, . . . , b, each set of motifs Ki is partitioned
into �|Ki|/v� subsets Ki = {Ki,1,Ki,2, . . . ,Ki,�|Ki|/v�}, each
one containing at most v distinct motifs. The second stage
is then run once for each possible element in the Cartesian
productK1×K2×· · ·×Kb. In this way SISMA drastically

Federico et al. Algorithms for Molecular Biology 2012, 7:20 Page 6 of 16
http://www.almob.org/content/7/1/20

reduces the number of intermediate structured motifs
generated and usually avoids out-of-memory failures at
the price of a moderate slowdown (see the Computational
cost section).
The only cases that this variant of SISMA is not able

to handle are those in which the memory shortage is due
to stage 1, i.e., when the number of simple motifs (and
their occurrences) is simply too large to fit in memory (we
will see that this happens in few very difficult instances on
synthetic data).

Occurrence print option
SISMA might be instructed to output the starting posi-
tions of all occurrences of the discovered structured
motifs.
Not using this option allows a fair comparison with tools

that do not print all motif occurrences, but just the motif
definitions.

Computational cost
The time computational cost of SISMA is given by the
cost of simple motif extraction plus that of occurrence list
intersections. Here we will first refer to the basic version of
SISMA, with only briefly mentioning the various options
at the end of the section.
With the current implementation, the simple motif

extraction tool must be run once for each different sin-
gle box template (i.e., for all different (�, e) pairs). Both
SMILE and our modified version of SPELLER have worst-
case time complexity in O(Nt�ν(e, �)), where t� is the
number of suffix tree nodes at depth �, N is the number
of input sequences, and ν(e, �) is the number of words
of length � that differ in at most e letters from a word
m of length �. It holds that ν(e, �) ≤ �e|�|e. Hence, the
time complexity is linear in the input size, but possibly
exponential in the number e of substitutions. Thus, as we
are working with the DNA alphabet, the first stage takes
O(N · ∑b

i=1 t�i�
ei
i 4ei).

Let Bi be the total number of occurrences of sim-
ple motifs found for the ith box in the first phase (see
Equation 1), for i = 1, . . . , b, and let Sj be the total num-
ber of j-prefixes occurrences found during the jth step of
the second stage, for j = 2, . . . , b − 1. The cost of the
occurrence list intersection phase is upper bounded by:

B1 · B2 + S2 · B3 + · · ·

· · · + Sb−1 · Bb =
b−1∑
i=1

Si · Bi+1

where equality holds since S1 = B1. Hence, the computa-
tional cost of SISMA is

O
(
N

b∑
i=1

t�i�
ei
i |�|ei +

b−1∑
i=1

Si · Bi+1

)
. (2)

Equation (2) clearly shows that the running time of
the second stage depends essentially on the number of
occurrences of simple motifs and that of intermediate
structured motifs. Note, however, that if there is a large
number of simple motifs the cost of first stage is high as
well. Low cost of the first stage and high cost of second
stage are possible only if there are relatively few simple
motifs but many intermediate structured motifs. This is
in principle possible, but in practice it hardly happens due
to order and distance constraints, as the computational
experiments clearly indicate. In practice, thus, the cost of
extracting structured motifs is comparable with that of
simple motif finding, at least when the starting positions
of all the occurrences are required. As for the memory
space used, it is not difficult to see that this is the max-
imum between: (1) SMILE space complexity needed to
generate all the motifs occurrences for each box, and (2)
the space needed to generate j-prefixes occurrences, i.e.,
O(maxj∈[2..b−1]{Sj + Bj+1}).
We now briefly consider options. As for index selec-

tion, it can be easily seen that the handling of more
complex data structures in main memory introduces, in
the worst case, time and memory penalties linear with
the number b of boxes. In practice, however, non-worst
case instances might run much faster with this option
activated (see Options section). For what concerns the
space saving option, it can be proved that the slowdown
is constant, although the exact figures depend on low
level implementation issues. On the machine used to
perform the experiments, the running times with space
saving activated were almost four times higher. We must
point out, however, that the intended use of this option
is just to avoid out-of-memory failures, and these can be
regarded as infinite time computations. Then, in these
cases the option can be thought to provide (sometimes)
“unbounded” speedups. In this case, space requirement
is dominated only by SMILE space requirement. Finally,
SISMA actually generates all occurrences during compu-
tation, and hence printing them takes only linear time in
the number of occurrences.

Results
Wehave performed a series of computational experiments
on both synthetic and real biological data with a twofold
goal: (1) compare the direct and 2-stage approaches using
the best available algorithm (RISOTTO) for the former
and our SISMA SMILE code for the latter; (2) com-
pare SISMA SPELLER with EXMOTIF [26], the only exact
tool for the frequent structured motif extraction prob-
lem which adopts the 2-stage approach and whose code is
available (see the Related work section)f.
We performed all the experiments on an uniproces-

sor AMD Athlon 64 3200+ with 1GB of RAM, forcing a
timeout of twelve hours for the execution of each tool.

Federico et al. Algorithms for Molecular Biology 2012, 7:20 Page 7 of 16
http://www.almob.org/content/7/1/20

Tests on synthetic data
In this section we report the results of tests performed
on synthetic data, which are often used to validate the
effectiveness of existing methods in a fully controlled
experimental setting, and to experimentally evaluate their
scalability properties. In particular, we generated syn-
thetic data sets according to the so called Planted Motif
Problem (PMP) [36] in the following way:

Sequence generation: we randomly generated the
sequences of the input set S, assuming the characters of
each sequence be i.i.d. and with equal probability (0.25)
assigned to each symbol. According to [36], the data sets
contain 20 sequences of 600 characters each.

Structured motif planting: we selected the number b of
boxes and the b pairs (�i, ei) using different rules, which
we will specify when describing the experiments. We gen-
erated distance constraints at random, making sure that
the total maximum distance between the first and last
box fit into the sequences. For each pair (�i, ei), defining
the template for a simple motif mi, i = 1, . . . , b, we first
selected a randomwordwi (the “exact” instance ofmi) and
then generated |S| occurrences of mi, at Hamming dis-
tance ≤ ei from wi, by substituting ei characters of wi with
characters from � chosen uniformly at random. Finally,
we planted the occurrences, one per sequence, by respect-
ing box order and distance constraints (but otherwise at
random). When generating a dataset to be tested using
EXMOTIF, we planted at least one exact structured motif
occurrence.

The parameters used to built the dataset where then
used to run the motif finding tools on that dataset. The
quorum is set to q = 1.0 in all tests.

The data set generating process outlined above pro-
duces boxes that are instances of the PMP. There is a
wide literature on the PMP, especially for single motif
extraction (see, e.g. [12,37,38]). Preliminary results rel-
ative to the structured motif extraction settings can be
found in [39] and, limited to dyads, in [15,28]. Using a
simple model [37], we can estimate the number E(�, e)
of simple motifs that one expects to find in a randomly
generated sequence, depending on the length of the motif
and on the number of allowed errors. Expectation of pairs
makes some instances easier to solve than others. When
talking about “difficult” instances we will refer to ones
in which the expected number of randomly found motifs
is high.

Experimental settings: Here we present results con-
cerning a set of tests in which we planted boxes with
variable lengths and number of allowed substitutions, ran-
domly chosen among those with expectation close to one
(i.e. for which the planted motif and a little number of

other random motifs can be expected), over the following
pairs: (9, 2), (10, 2), (11, 2), (11, 3), (12, 3), (13, 3), (14, 1),
(14, 2), (14, 3), (14, 4), (15, 1), (15, 2), (15, 3), (15, 4),
(15, 5).

We varied the number b of boxes between 2 and 10 and
ran the algorithms 20 times on different datasets. We ran
SISMAwith the box index selection option, which resulted
very effective in this set of experiments.

Further results on synthetic data are briefly reported at
the end of this section and, in details, in Additional file 2.

Results and discussion: To compare pairs of tools, we
used two different measures: (1) win-count, i.e., given a
common value of b, the number of times one tool outper-
formed the other; (2) running times: we report best, worst
and average running times, as well as standard deviations,
for each value of b usedg (we computed means and stan-
dard deviations omitting the best and worst time runs).
Moreover, we separately computed the above measures by
considering either all runs, or only runs where both tools
ended computations.

SISMA SMILE vs RISOTTO

Figure 2a reports win-counts, while Figure 2b reports the
number of times each tool fails for particular values of b.
From Figure 2a we can see that no tool is definitely bet-

ter than the other. RISOTTO is usually more competitive
for small number of boxes (up to six), but turns signifi-
cantly less competitive as the number of boxes increases.
Moreover, RISOTTO failed on few runs even with rela-
tively few (i.e., six or more) boxes, usually when the first
boxes are hard instances of the PMP.
On the other hand, SISMA SMILE was almost as good

as RISOTTO for small number of boxes while it handled
larger problem instances definitively better. In the major-
ity of tests, SISMA SMILE ended computation before
RISOTTO and it failed only once due to memory short-
age in the first stage (because of too many simple motif
occurrences).
Figure 3 reports running times. Note that, since

RISOTTO is the tool which failed more frequentlyh, its
charts show a greater difference in running times com-
pared to SISMA SMILE’s. This means that the runs that
were somehow difficult for RISOTTO were not particularly
hard for SISMA SMILE. It also means, on the contrary,
that SISMA SMILE’s failures occurred quite early during
the computation (essentially as early as the length of a
typical successful computation).
The best case was almost always favorable to RISOTTO,

and there was no difference for what concerns best case
when considering all runs or only those without failures.
In the best case, RISOTTO ended computation in less than
10 seconds (with the exception of ten boxes, where the
best run took 24 secs), while RISOTTO ended computation

Federico et al. Algorithms for Molecular Biology 2012, 7:20 Page 8 of 16
http://www.almob.org/content/7/1/20

Figure 2 Risotto vs SISMA Smile on synthetic datasets (a) Number of iterations in which SISMA SMILE outperforms RISOTTO or vice versa,
and (b) number of tools failures. Notice that when one tool fails, the other might end computation, hence, failures might not sum up to the total
number of runs.

in less than 6 seconds for b ≤ 5 and in about 30 seconds
for b > 5, never exceeding 35 seconds.
Looking at Figure 3, we observe what follows:

(a) In the worst case, SISMA SMILE is much faster than
RISOTTO: the longer run for SISMA SMILE took less
than 74min, while for RISOTTO some runs took
more than 10 h, even for relatively small number of
boxes and excluding failures. Hence, even when
RISOTTO defeated SISMA SMILE, the latter was still
relatively fast. The opposite was not always true.

(b) Although average running times should be analyzed
with care, RISOTTO showed average running times

much worse than SISMA SMILE’s, even without
considering failures. For instance, in case of ten boxes
RISOTTO’s average runtime was around 1h and a
half, while SISMA SMILE took less than 25min.

(c) RISOTTO showed a greater variance across all these
data.

We further investigated the structure of the instances in
which one tool outperformed the other in order to bet-
ter understand advantages and disadvantages that may
be typical of the direct and 2-stage approaches (see an
example in Figure 4). We anticipate that the key factor is
the first stage of SISMA SMILE.

Federico et al. Algorithms for Molecular Biology 2012, 7:20 Page 9 of 16
http://www.almob.org/content/7/1/20

(a) (a’)

(b) (b’)

(c) (c’)

Figure 3 Risotto’s and SISMA Smile’s running times on synthetic datasets.Worst and average run times and standard deviations (in seconds)
for SISMA SMILE and RISOTTO. Average runtime and standard deviations have been computed omitting best and worst runs. (a) (b) (c) Running
times of all runs are considered. (a’) (b’) (c’) Only running times of runs in which both tools end computation are considered. Notice that the scale
on Y-axes is not the same for all charts.

Federico et al. Algorithms for Molecular Biology 2012, 7:20 Page 10 of 16
http://www.almob.org/content/7/1/20

(a)

(9,2) (10,2) (11,3) (12,3) (15,1) (10,2) (14,1) boxes

478 356 5673 4883 1 356 3 simple motifs

1.88s 1.41s 25.79s 25.74s 0.05s - 0.02s 1
st

 phase (SMILE): 54.89 s

0s
1 2-box motifs

2
st

 phase (SISMA): 0.72 s

SISMA_SMILE time: 55.61 s
RISOTTO time: 26306.91 s

0.02s
1 3-box motifs

0.02s
1 4-box motifs

0.04s
1 5-box motifs

0.26s
1 6-box motifs

0.38s
1 7-box motifs (b)

(13,3) boxes

129 1 199 247 21631 2603 simple motifs

(13,2) (15,1) (10,2) (9,2) (15,4)

1.81s 0.03s 1.43s 1.39s 346.68s 25.73s 1
st

 phase (SMILE): 377.07 s

0s
1 2-box motifs

2
st

 phase (SISMA): 0.92 s

SISMA_SMILE time: 377.99 s
RISOTTO time: 13.25 s

0.02s
1 3-box motifs

0s
1 4-box motifs

0.1s
1 5-box motifs

0.8s
1 6-box motifs

Figure 4 Examples: SISMA Smile vs Risotto. Running times of RISOTTO, SISMA SMILE’s stages 1 and 2, and of all SISMA SMILE’s list intersection
step (during stage 2). A 0s time for list intersection means that the corresponding step took time smaller than timer resolution. The box index
selection order during stage 2 is shown. In example (a) SISMA SMILE outperforms RISOTTO. Observe that SMILE is called once on the (10, 2) pair, so
that the time reported for the 6th box is 0. In this example RISOTTO is 473 times slower than SISMA. In example (b) RISOTTO outperforms SISMA SMILE

because the stage 1 performed by SMILE is slow due to the presence of a box for which a large number of simple motifs is found. In this case
SISMA SMILE is 28 times slower than RISOTTO. In particular, the most time consuming task is the extraction of the (15, 4) box (about 91.7% of total
execution time), for which 21631 simple motifs are found.

• SISMA SMILE outperforms RISOTTO when
SISMA SMILE first stage is fast. This happens mainly
for two reasons (that might happen simultaneously):
(i) there is a small total number of simple motifs and
SMILE running time is low. (ii) Boxes are
characterized by the same pair (length, errors), and
hence SMILE is run only once for each pair.

• RISOTTO outperforms SISMA SMILE when the first
stage of simple motif extraction is slow due to boxes
producing a large number of simple motifs. This
situation might also affect SISMA SMILE second
stage: a large number of intermediate structured
motifs means a time consuming occurrence list
intersection stage. In some cases the phenomenon is
almost completely eliminated using the box index
selection option.

Finally, a closer inspection on RISOTTO’s behavior
shows that its running time may be highly affected by
the positions of boxes with large search spaces, e.g., box
(14, 4). We performed a set of experiments in which we
searched for planted long structured motifs characterized

by the same boxes (number and positions), with just one
“floating” (14, 4) box, which we moved from first to last
position. While the details can be found in Additional
file 2, we observe here that RISOTTO’s performance
degraded considerably, while SISMA SMILE’s behavior
was essentially unaffected by the (14, 4) box position.

SISMA SPELLER vs EXMOTIF

Wehave no results for the comparison of SISMA SPELLER
and EXMOTIF, because the latter never ended computa-
tion within this experimental settings.
We explain this negative behavior observing that the set

of pairs (�, e) among which we chose the boxes of planted
structured motifs contained several pairs characterized by
large values of � and e, which EXMOTIF is apparently not
able to address.
On the other hand, SISMA SPELLER never failed within

this experimental setting, exhibiting low running times.
The worst case run (even for ten boxes) was never above
three minutes while the best case runs lasted around three
seconds for two boxes and about 33 seconds in case of
ten boxes.

Federico et al. Algorithms for Molecular Biology 2012, 7:20 Page 11 of 16
http://www.almob.org/content/7/1/20

Results for other synthetic experiments
we conclude this section by mentioning the results
obtained for two other synthetic data sets (the details can
be found in Additional file 2).

• We tested the tools on “presumably” (i.e., à priori)
easy instances for SISMA, where the structured
motifs sought were composed by boxes of the same
type (i.e., same length and number of errors). Indeed
SISMA SMILE always outperformed RISOTTO when
both tools ended computation, while EXMOTIF
outperformed SISMA SPELLER on input instances
with very small values of �, e, and b. For larger values,
however, EXMOTIF did not end computations, while
SISMA SPELLER failed only when boxes were any of
the known very hard PMP instances.

• The other data set was composed of presumably very
hard instances, according to the PMP classification.
We observed a relatively large number of failures,
both of SISMA SMILE and RISOTTO. The reasons
were essentially those already observed, but
interestingly enough, the two tools did not (usually)
fail on the same instances, meaning that a difficult
instance for one tool might not be so difficult for the
other. EXMOTIF did end computation only on a
limited number of instances and only in very few
cases it outperformed SISMA SPELLER.

Tests on real biological data
In this section we report the results of experiments per-
formed on three different datasets composed of upstream
regions of co-regulated genes of the Saccharomyces cere-
visiae in order to extract motifs representing transcription
factor binding sites.

UASH-URS1-10 dataset
The dataset was drawn from [13]. It contains the upstream
sequences of 11 meiotic genes of the Saccharomyces cere-
visiae which are cooperatively regulated by the transcrip-
tion factors URS1H and UASH involved in the meiotic
expression during sporulation.
These 11 genes are listed in SCPD [40]. In 10 out of

the 11 genes, the URS1H binding site appears down-
stream from UASH site and both sites are located within
the upstream region -300 to -1. We included these ten
regions in the dataset. We do not included a sequence for
the remaining gene (HOP1) since there the binding sites
are reversed and the URS1H site is placed much further
upstream compared to all the other genes in the set.
We designed the same experimental settings as in [26],

except for the distance gap between the two sites. We
chose a larger gap range with respect to [26] in order
to approach the problem in a more realistic way, in
which information about the binding site being sought

may not be known. We look for structured motifs of the
form (3, 1)−[1, 1]−(5, 2)−[1, 200]−(9, 1). We required
that structured motifs occurred in at least 7 sequences
(quorum q = 70%). SISMA was run with the space-
saving option.

UASH-URS1-5 dataset
In the 10 genes dataset discussed above, the two bind-
ing sites occur within at most 200 bases. However, as
GuhaThakurta and Stormo suggest in [13], that gene
sequences can be equally divided in two groups based on
the average distance between UASH and URS1H sites.
According to this, we obtained a group of 5 genes in
which the binding sites are within 50 bases of each
other.
We reproduced the experimental setup defined in [28]:

we analyzed the five sequences in UASH-URS1-5 and
looked for dyad motifs of the form (7, 1)−[1, 50]−(10, 2)
(again, we actually used a larger distance gap with respect
to [28] in order to approach the problem in a more
realistic way). Quorum was set to 80%, i.e., at least
4 sequences.

KAR4P dataset
This dataset contains 23 genes of the Saccharomyces
cerevisiae which are co-regulated by the KAR4p tran-
scription factor required for gene regulation in response
to pheromones. We obtained the list of 23 co-regulated
genes from the YEASTRACT database [41] and the
upstream regions of those genes using the RSAT [42]
retrieve sequence tool.
We deduced the characteristics of the KAR4p bind-

ing site from the consensus given in YEASTRACT
and we looked for structured motifs of the form
(3, 1)−[2, 2]−(4, 1)−[2, 2]−(3, 1)−[1, 1]−(2, 1) occur-
ring in at least 68% of the input sequences, i.e., in at least
16 sequences.

Discussion
Figure 5 reports the running times (in seconds) for all the
four tools, while Table 1 reports the number of simple
and structured motifs found for each dataset and the aver-
age number of occurrences. We can make the following
general observations:

• EXMOTIF terminated computations in all the
experiments, contrary to what happened on synthetic
datasets. Here, structured motifs are composed of few
boxes with few substitutions allowed, experimental
conditions extremely favorable to EXMOTIF.

• Stage 2 is predominant on SISMA’s running time (see
Table 1), in contrast with what we observed on the
synthetic datasets, because here (except for
UASH-URS1-5) there is a large number of

Federico et al. Algorithms for Molecular Biology 2012, 7:20 Page 12 of 16
http://www.almob.org/content/7/1/20

(a) (b)

Figure 5 Running times on biological datasets. Running times (in seconds) of (a) SISMA SMILE and RISOTTO (b) SISMA SPELLER and EXMOTIF on
biological datasets, when using an uniprocessor machine with 1GB of RAM.

occurrences for each box, making occurrence lists
intersection a demanding task.

• SISMA’s stage 2 is characterized by running times
which increase with the number of boxes and with
the total number of occurrences, coherently with the
theoretical bound (see the Methods section).

The tools under consideration exhibited very different
behaviors on the three datasets, so that there is not a clear
“overall” winner.
UASH-URS1-5

SISMA SMILE outperformed RISOTTO and SISMA
SPELLER outperformed EXMOTIF. Running times and dif-
ferences in running times are really small, meaning that
this instance of the problem is not really challenging for
any of the tools: SISMA deals with a small number of sim-
ple/structured motifs; RISOTTO drastically reduces the
search space starting form the second box on; EXMOTIF
deals with a small number of boxes and allowed substitu-
tions.
UASH-URS1-10

On this dataset SISMA SPELLER outperformed EX
MOTIF, while SISMA SMILE without the space-saving
option ran out of memory. The reported results refer to
SISMA SMILE with the option activated (each set Ki is
partitioned in at least five subsets). SISMA SMILE outper-
formed RISOTTOi.
This dataset results to be the worst for RISOTTO, being

more affected by the search space size of boxes and the by

total number of structured motifs, than by the number of
simple motif occurrences.
KAR4P

RISOTTO and EXMOTIF outperformed SISMA SMILE
and SISMA SPELLER, respectively.
SISMA pays a very slow second stage, due to the pres-

ence of several thousands of simple motifs occurrences in
the input sequences (see Table 2), while RISOTTO takes
advantage from the fact that the occurrence-paths on the
suffix tree were significantly less than actual motif occur-
rences, and search spaces of boxes quite small. Finally,
here EXMOTIF is fast in the phase of neighbor generation,
as in this datasets boxes allow at most one error.

Conclusions
Our conclusion is that the 2-stage approach cannot be
turned down without due reflection. In this section we
present arguments in support of this thesis and some
guidelines that may help the user to choose the most effi-
cient approach, depending on the problem instance s/he
has to solve. Finally, we discuss possible improvements of
SISMA.

Direct vs 2-stage approaches
While implementing and working on SISMA we had the
opportunity to reason on the advantages and disadvan-
tages of the two approaches, besides running time.

• Modularity. The 2-stage approach is clearly more
modular, being made of two (possibly completely)

Federico et al. Algorithms for Molecular Biology 2012, 7:20 Page 13 of 16
http://www.almob.org/content/7/1/20

Table 1 Number of simple and structuredmotifs on biological datasets

UASH-URS1 5

SISMA SMILE SISMA SPELLER

Box (7, 1) 1,452 (∼ 10) 420 (∼ 10)

Box (10, 2) 5,472 (∼ 5) 92 (∼ 5)

StructuredMotif

(7, 1)−[1, 50]−(10, 2) 16,662 (∼ 5) 14 (∼ 5)

UASH-URS1 10

SISMA SMILE SISMA SPELLER

Box (3, 1) 64 (∼ 1000) 64 (∼ 1000)

Box (5, 2) 1,024 (∼ 1000) 942 (∼ 1000)

Box (9, 1) 103 (∼ 10) 55 (∼ 10)

StructuredMotif

(3, 1)−[1, 1]−(5, 2)−[1, 200]−(9, 1) 2,309,173 (∼ 70) 7,241 (∼ 70)

KAR4P

SISMA SMILE SISMA SPELLER

Box (3, 1) 64 (∼ 2000) 64 (∼ 2000)

Box (4, 1) 256 (∼ 1000) 256 (∼ 1000)

Box (2, 1) 16 (∼ 6000) 16 (∼ 6000)

StructuredMotif

(3, 1)−[2, 2]−(4, 1)−[2, 2]−(3, 1)−[1, 1]−(2, 1) 101,750 (∼ 50) 858 (∼ 50)

The table is divided in three (sub)tables, one for each dataset. The following information apply to each sub-table. There is a row corresponding to each box type
involved and one more row corresponding to the type of structured motifs to be found. Also, there is a column for each of the two versions of our SISMA algorithm
(SISMA SMILE and SISMA SPELLER). Each cell reports two pieces of information: (1) the number of simple/structured motifs in the input sequences that conform to the
given specifications, and (2) the corresponding (approximate) average number of occurrences of each simple/structured motif found.

distinct software components. This makes
implementation and maintenance easier. Possible
optimizations and new variants can be implemented
on both stages independently. Stage 1 might be
optimized with new, more efficient simple motif
extraction tools at negligible costs. The tool might be
also easily adapted to extract simple motifs using
different algorithms (not only exact), obtaining
versions of the tool that tackle slightly different
problems. Even more, the tool might be enhanced
with the possibility for the user to choose the
particular software to run in stage 1.
Optimizations and variants might not be equally easy
to implement under the direct approach, even though

any conclusion to this end strictly depends on the
particular software under consideration.

• Parallelization. SISMA might be easily adapted to
efficiently run on a multiprocessor machine. For
stage 1 there may be the availability of a parallel
version of the tool adopted (such as PSMILE [43]), but
otherwise simple motif space enumeration could be
easily partitioned and mapped on distinct processors.
Stage 2 (lists intersection) might be performed
simultaneously on distinct processors as well, by
using a technique analogous to the space saving
option (with distinct processors accessing to distinct
portions of data structures to avoid memory
collisions).

Table 2 SISMA’s running times on biological datasets

SISMA SMILE SISMA SPELLER

1st stage 2nd stage 1st stage 2nd stage

UASH-URS1 5 0.60 sec 23.28 sec 3.00 sec 0.24 sec

UASH-URS1 10 0.61 sec 358.43 sec 5.83 sec 26.70 sec

KAR4P 0.18 sec 663.04 sec 6.20 sec 114.64 sec

Running times (in seconds) taken by stage 1 and 2 of SISMA SMILE and SISMA SPELLER on biological datasets, when using an uniprocessor machine with 1GB of RAM.
With one exception, stage 2 is always (much) slower than stage 1.

Federico et al. Algorithms for Molecular Biology 2012, 7:20 Page 14 of 16
http://www.almob.org/content/7/1/20

As before, the design of a fast parallel version of a
direct enumeration algorithm cannot be guaranteed
without taking the algorithm itself (and its logic) into
consideration.

• Exploratory search of structured motifs. The 2-stage
approach seems to better adapt to an “exploratory
search” utilization for structured motif finding (e.g.,
through a Web interface). The user might be given
the possibility to independently execute the two
stages (or even upload the simple motifs
occurrences); given the results of the first stage, s/he
then might run the second stage several times with
different input parameters (say, box orders and
distance constraints). This feature might be crucial in
real applications, where input parameters are difficult
to determine with care.
This adaptive use of the tool seems really harder to
make in case of direct approach without paying a
high price in terms of execution times.

• Search space reduction. As already pointed out in the
paper, since the direct approach looks at the
structured motifs as whole, it is able to better handle
instances characterized by large size search spaces of
some boxes.

Direct tool comparison
The following observations might be used to guide the
user toward the use of one approach/tool or the other.

• SISMA vs RISOTTO.
The tests performed show that, when RISOTTO is
faster than SISMA, one or both of the following
conditions occur: (1) boxes have small size search
spaces and a small number of simple motifs, (2) boxes
with large size search spaces occur near the end
(large box index) of the structured motifs. Usually, in
all the other cases SISMA is faster. This is particularly
evident when the structured motifs being found are
composed of just one type (or few types) of boxes.
RISOTTO fails for time-out (in our tests, 12 hours),
SISMA fails for out-of-memory mainly because of the
first stage. Hence, according to the available
hardware appropriate decisions on which tool to use
can be made.
RISOTTO does not output occurrence positions, but
only their number.

• SISMA vs EXMOTIF.
EXMOTIF terminates computation only for a small
number of boxes and, under this circumstance, it is
faster than SISMA only when boxes have small length
and/or small number of admitted substitutions. It
fails in any other more complex situation, making
SISMA SPELLER the only available tool for the
frequent structured motif discovery problem.

SISMA implementation and improvements
We designed and developed a tool for exact structured
motif discovery, based on the 2-stage approach. Incor-
porating simple algorithmic ideas and data structures,
SISMA is accurately crafted software which proved to
compete very well with other published tools for the same
problem. On a comprehensive benchmark (composed of
both synthetic and real biological datasets) SISMA exhib-
ited more than acceptable performances, even on a very
limited power andmemorymachine. Running times never
exceeded the imposed deadline of 12 hours and altogether
the tool failed only on few very difficult problem instances
(always due to memory shortage).
We can improve SISMA in some respects. As the

experiments clearly show, a crucial issue is the possibly
high memory consumption during stage 1, which may
cause SISMA to fail. The positive side is that memory
critical inputs can in general be detected and appro-
priate actions be taken. One such action consists sim-
ply of automatically activating the space saving option.
Another option amounts to interleaving simple motif
extraction and list intersection. Also, we plan to imple-
ment some simple algorithmic improvements that will
help to reduce (to some extent) the search space of sim-
ple motifs. For instance, we can eliminate proper pre-
fixes of sequences when extracting specific boxes; more
precisely, given box i, we may cut prefixes that are as
long as the sum of the lengths of previous boxes, plus
the sum of the minimum distances between previous
boxes.

Endnotes
aSearch time is sometimes reduced by further constrain-
ing the motif definition, as in Weeder [14].
bHere we will refer the tool presented in [7] as SPELLER.
cActually, Ecomp uses an implementation of MITRA-
count made by the authors of Ecomp, since MITRA-count
itself was, and still is, not available.
dActually, SMILE is a suffix tree-based tool designed
to find structured motifs; however it can be used also
for simple motif extraction (as a structured motif finder
SMILE is outperformed by RISOTTO).
eWe discarded the option of implementing a post-
processing filter of SMILE output for efficiency reasons,
and the option of modifying SMILE code as a more com-
plicated one.
fWe always have run SISMA with the print option off
since RISOTTO and EXMOTIF have no possibility to out-
put the starting positions of all occurrences. To be fair,
EXMOTIF actually prints the positions of the exact occur-
rences.
gObserve that direct comparison on average running
times might be of little significance, as they might
vary considerably on input the same value of b (even

Federico et al. Algorithms for Molecular Biology 2012, 7:20 Page 15 of 16
http://www.almob.org/content/7/1/20

resulting in charts that might show a non monotonic
behavior).
hFor RISOTTO failure always means “runs beyond the
deadline.”
iOn machines with more main memory the gap between
the running times would have been even more favorable
to SISMA SMILE.

Additional files

Additional file 1: Implementation details. Additional file 1 (in pdf
format) contains details on the basic implementation of SISMA SMILE and
the index box selection variant.

Additional file 2: More experiments on synthetic dataset. Additional
file 2 (in pdf format) includes the results obtained on two more synthetic
datasets: one designed as an easier benchmark, one as a particularly hard
benchmark for all the tools. Moreover, results are shown for a specific test
designed for RISOTTO, in order to investigate how its performance varies
according to boxes order.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All the authors contributed equally to the design of the work. Moreover, PV
wrote the software, MF supervised the experiments, ML and MM wrote the
paper. All authors read and approved the final manuscript.

Acknowledgements
The authors wish to thank the anonymous reviewers for the constructive
criticisms that helped to improve the manuscript, and Roberto Cavicchioli for
the work done on a preliminary version of this endeavor.

Received: 27 October 2011 Accepted: 25 July 2012
Published: 21 August 2012

References
1. Watson JD, Baker TA, Bell SP, Gann A, Levine M, Losick R:Molecular Biology

of the Gene, 6/e: Pearson International Edition; 2007.

2. Werner T:Models for prediction and recognition of eukaryotic
promoters.Mammalian Genome 1999, 10:168–175.

3. Sinha S, Tompa M: Discovery of novel transcription factor binding
sites by statistical overrepresentation. Nucleic Acids Res 2002,
30:5549–5560.

4. Lemon B, Tjian R:Orchestrated response: a symphony of transcription
factors for gene control. Genes & Dev 2000, 14:2551–2569.

5. Wray GA: The evolutionary significance of cis-regulatory mutations.
Nature Rev Genet 2007, 8:206–216.

6. Bailey TL, Elkan C: The Value of Prior Knowledge in Discovering Motifs
with MEME. In Proceedings of 3rd International Conference on Intelligent
Systems for Molecular Biology (ISMB ’95). 1995:21–29.

7. Sagot MF: Spelling approximate repeated or commonmotifs using a
suffix tree. Lecture Notes Comput Sci 1998, 1380:111–127.

8. Li M, Ma B, Wang L: Finding Similar Regions in Many Strings. In
Proceedings of the 31th Annual ACM Symposium on Theory of Computing
(STOC ’99). 1999:473–482.

9. Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, Wootton JC:
Detecting subtle sequence signals: a Gibbs sampling strategy for
multiple alignment. Science 1993, 262:208–214.

10. Brazma A, Jonassen I, Eidhammer I, Gilbert D: Approaches to the
Automatic Discovery of Patterns in Biosequences. J Comput Biol 1998,
5(2):277–304. citeseer.ist.psu.edu/article/brazma97approaches.html.

11. van Helden, J, André B, Collado-Vides J: Extracting regulatory sites from
the upstream region of yeast genes by computational analysis of
oligonucleotide frequencies.Mol Biol 1998, 281:827–842. citeseer.ist.
psu.edu/biol02extracting.html.

12. Pevzner PA, Sze SH: Combinatorial Approaches to Finding Subtle
Signals in DNA Sequences. In Proceedings of 8th International Conference
on Intelligent Systems for Molecular Biology (ISMB ’00). 2000:269–278.

13. Guha-Thakurta D, Stormo GD: Identifying target sites for
cooperatively binding factors. Bioinformatics 2001, 17:608–621.

14. Pavesi G, Mauri G, Pesole G: An algorithm for finding signals of
unknown length in DNA sequences. Bioinformatics 2001, 17:207–214.

15. Eskin E, Pevzner P: Finding composite regulatory patterns in DNA
sequences. In Proceedings of the 10th Annual International Conference on
Intelligent Systems for Molecular Biology (ISMB ’02). 2002:S354–S363.

16. Sinha S, Tompa M: YMF: a program for discovery of novel
transcription factor binding sites by statistical overrepresentation.
Nucleic Acids Res 2003, 31:3586–3588.

17. Leung HCM, Chin FYL: Generalized Planted (l, d)-Motif Problemwith
Negative Set. In Proceedings of theWorkshop on Algorithms in
Bioinformatics (WABI). 2005:264–275.

18. Favorov AV, Gelfand MS, Gerasimova AV, Ravcheev DA, Mironov AA,
Makeev VJ: A Gibbs sampler for identification of symmetrically
structured, spaced DNAmotifs with improved estimation of the
signal length. Bioinformatics 2005, 21:2240–2245.

19. Mendes N, Casimiro A, Santos P, Sá-Correia I, Oliveira A, Freitas A:MUSA: a
parameter free algorithm for the identification of biologically
significant motifs. Bioinformatics 2006, 22:2996–3002.

20. D’haeseleer P: How does DNA sequence motif discovery work? Nat
Biotech 2006, 24(8):959–961. http://dx.doi.org/10.1038/nbt0806-959.

21. Das MK, Dai HK: A survey of dna motif finding algorithms. BMC
Bioinformatics 2007, 8:S21.

22. Stormo GD, Hartzell GW III: Identifying protein binding sites from
unaligned DNA fragments. PNAS 1989, 86:1183–1187.

23. Wolfertstetter F, Frech K, Herrmann G, Werner T: Identification of
functional elements in unaligned nucleic acid sequences by a novel
tuple search algorithm. Comput Appl Biosci 1996, 12:71–80.

24. Tompa M: An exact method for finding short motifs in sequences,
with application to the ribosome binding site problem. In
Proceedings of 7th International Conference on Intelligent Systems for
Molecular Biology (ISMB ’99). 1999:262–271.

25. Linhart C, Halperin Y, Shamir R: Transcription factor andmicroRNA
motif discovery: The Amadeus platform and a compendium of
metazoan target sets. Genome Res 2008, 18(7):1180–1189.

26. Zhang Y, Zaki MJ: EXMOTIF: efficient structured motif extraction.
AlgorithmsMol Biol 2006, 1:21.

27. Pisanti N, Carvalho A, Marsan L, Sagot MF: RISOTTO: Fast extraction of
motifs with mismatches. In Proceedings of the 7th Latin American
Theoretical Informatics Symposium. 2006.

28. Zhou J, Sander J, Lin G: Efficient composite pattern finding from
monad patterns. Int J Bioinf Res Appl 2007, 3:86–99.

29. Tompa M, Li N, Bailey TL, Church GM, et. al: Assessing computational
tools for the discovery of transcription factor binding sites. Nature
Biotechnol 2005, 23:137–144. http://www.ncbi.nlm.nih.gov/pubmed/
15637633.

30. McCreight EM: A Space-Economical Suffix Tree Construction
Algorithm. J ACM 1976, 23(2):262–272.

31. Gusfield D: Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. New York: Cambridge University Press; 1997.

32. Marsan L, Sagot MF: Algorithms for Extracting Structured Motifs
Using a Suffix Tree with an Application to Promoter and Regulatory
Site Consensus Identification. J Comput Biol 2000, 7(3-4):345–362.

33. Carvalho A, Freitas A, Oliveira A, Sagot MF: A highly scalable algorithm
for the extraction of cis-regulatory regions. In Proceedings of the
Asia-Pacific Bioinformatics Conference. 2005:273–282.

34. Allali J, Sagot MF: The at most k-deep factor tree. Tech rep. 2004.
35. Carvalho A, Freitas A, Oliveira A, Sagot: Efficient Extraction of

Structured Motifs Using Box-links. In Proceedings of 11th Conference on
String Processing and Information Retrieval. 2004:267–268. http://citeseer.
ist.psu.edu/viewdoc/summary? doi:10.1.1.102.9439.

36. Leung CM, Chin FYL: Algorithms for Challenging Motif Problems.
J Bioinf Comput Biol 2006, 4:43–58.

http://www.biomedcentral.com/content/supplementary/1748-7188-7-20-S1.pdf
http://www.biomedcentral.com/content/supplementary/1748-7188-7-20-S2.pdf
citeseer.ist.psu.edu/article/brazma97approaches.html
citeseer.ist.psu.edu/biol02extracting.html
citeseer.ist.psu.edu/biol02extracting.html
http://dx.doi.org/10.1038/nbt0806-959
http://www.ncbi.nlm.nih.gov/pubmed/15637633
http://www.ncbi.nlm.nih.gov/pubmed/15637633
http://citeseer.ist.psu.edu/viewdoc/summary?
http://citeseer.ist.psu.edu/viewdoc/summary?
doi: 10.1.1.102.9 439

Federico et al. Algorithms for Molecular Biology 2012, 7:20 Page 16 of 16
http://www.almob.org/content/7/1/20

37. Buhler J, Tompa M: Finding motifs using random projections.
J Comput Biol 2002, 9:225–242.

38. Davila J, Balla S, Rajasekaran S: Fast and Practical Algorithms for
Planted (l,d)-Motif Search. IEEE/ACM Trans Comput Biol Bioinf (TCBB)
2007, 4(4):544–552.

39. Federico M, Valente P, Leoncini M, Montangero M, Cavicchioli R: An
Efficient Algorithm for Planted Structured Motif Extraction. In
CompBio ’09: Proceedings of the 1st ACMWorkshop on Breaking Frontiers of
Computational Biology. 2009:1–6.

40. Zhu J, Zhang M: SCPD: a promoter database of the yeast
Saccharomyces cerevisiae. Bioinformatics 1999, 15:607–611.

41. Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP,
Alenquer M, Freitas AT, Oliveira AL, Sá-Correia I: The YEASTRACT
database: a tool for the analysis of transcription regulatory
associations in Saccharomyces cerevisiae. Nucleic Acids Res 2006,
34:D446–D451.

42. Thomas-Chollier M, Sand O, Turatsinze JV, Janky R, Defrance M, Vervisch E,
Brohee S, van Helden J: RSAT: regulatory sequence analysis tools.
Nucleic Acids Res 2008, 36:W119–W127.

43. Carvalho AM, Freitas AT, Oliveira AL, Sagot MF: A parallel algorithm for
the extraction of structured motifs. In Proceedings of the 19th ACM
Symposium on Applied Computing (SAC’04). 2004:147–153.

doi:10.1186/1748-7188-7-20
Cite this article as: Federico et al.: Direct vs 2-stage approaches to struc-
tured motif finding. Algorithms for Molecular Biology 2012 7:20.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	TFBS discovery as an algorithmic problem
	Focus of the paper
	Related work
	SMILE, RISO and RISOTTO
	ECOMP
	ExMotif
	Results

	Methods
	Basic implementation
	Stage 1
	Stage 2

	Options
	Box index selection option
	Space-saving option
	Occurrence print option
	Computational cost

	Results
	Tests on synthetic data
	SISMA_Smile vs Risotto
	SISMA_Speller vs ExMotif
	Results for other synthetic experiments

	Tests on real biological data
	UASH-URS1-10 dataset
	UASH-URS1-5 dataset
	KAR4P dataset
	Discussion

	Conclusions
	Direct vs 2-stage approaches
	Direct tool comparison
	SISMA implementation and improvements

	Endnotes
	Additional files
	Additional file 1
	Additional file 2

	Competing interests
	Authors' contributions
	Acknowledgements
	References

