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Abstract

Background: Automatic extraction of motifs from biological sequences is an important research problem in study
of molecular biology. For proteins, it is desired to discover sequence motifs containing a large number of wildcard
symbols, as the residues associated with functional sites are usually largely separated in sequences. Discovering
such patterns is time-consuming because abundant combinations exist when long gaps (a gap consists of one or
more successive wildcards) are considered. Mining algorithms often employ constraints to narrow down the search
space in order to increase efficiency. However, improper constraint models might degrade the sensitivity and
specificity of the motifs discovered by computational methods. We previously proposed a new constraint model to
handle large wildcard regions for discovering functional motifs of proteins. The patterns that satisfy the proposed
constraint model are called W-patterns. A W-pattern is a structured motif that groups motif symbols into pattern
blocks interleaved with large irregular gaps. Considering large gaps reflects the fact that functional residues are not
always from a single region of protein sequences, and restricting motif symbols into clusters corresponds to the
observation that short motifs are frequently present within protein families. To efficiently discover W-patterns for
large-scale sequence annotation and function prediction, this paper first formally introduces the problem to solve
and proposes an algorithm named WildSpan (sequential pattern mining across large wildcard regions) that
incorporates several pruning strategies to largely reduce the mining cost.

Results: WildSpan is shown to efficiently find W-patterns containing conserved residues that are far separated in
sequences. We conducted experiments with two mining strategies, protein-based and family-based mining, to
evaluate the usefulness of W-patterns and performance of WildSpan. The protein-based mining mode of WildSpan
is developed for discovering functional regions of a single protein by referring to a set of related sequences (e.g.
its homologues). The discovered W-patterns are used to characterize the protein sequence and the results are
compared with the conserved positions identified by multiple sequence alignment (MSA). The family-based mining
mode of WildSpan is developed for extracting sequence signatures for a group of related proteins (e.g. a protein
family) for protein function classification. In this situation, the discovered W-patterns are compared with PROSITE
patterns as well as the patterns generated by three existing methods performing the similar task. Finally, analysis
on execution time of running WildSpan reveals that the proposed pruning strategy is effective in improving the
scalability of the proposed algorithm.

Conclusions: The mining results conducted in this study reveal that WildSpan is efficient and effective in
discovering functional signatures of proteins directly from sequences. The proposed pruning strategy is effective in
improving the scalability of WildSpan. It is demonstrated in this study that the W-patterns discovered by WildSpan
provides useful information in characterizing protein sequences. The WildSpan executable and open source codes
are available on the web (http://biominer.csie.cyu.edu.tw/wildspan).
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Background
As sequencing projects generate biological sequences at
an astonishing rate, identifying functional signatures
directly from sequences is of particular value in func-
tional biology [1,2]. These signatures can then be used
to predict function or functionally important residues of
a novel protein. The functionally important residues of
proteins are generally conserved during evolution [3].
Conserved regions of a protein sequence can be identi-
fied by aligning the query protein with its homologues
in protein databases. Alternatively, pattern mining (also
called motif discovery) is an effective approach for iden-
tifying conserved regions [4-7].
Motif finding algorithms have been widely used in this

field for finding sequence signatures when given a set of
related sequences (pattern mining). The resultant motifs
are then employed in predicting protein function and
functional sites when given a novel sequence (pattern
matching). We previously employed motif finding in a
hybrid way: detecting functional regions of a novel
sequence directly by mining its sequence along with a
set of homologues found in sequence database
(MAGIIC-PRO, [8]). Similar to multiple sequence align-
ment (MSA), MAGIIC-PRO can be invoked as long as
the query protein can find sufficient homologues from
databases (this can be easily achieved after the comple-
tion of abundant sequencing projects). In this way, func-
tional residues of the query protein can be predicted
even when the function of the collected homologues is
still left unknown. MAGIIC-PRO identified a set of resi-
dues that are concurrently conserved during evolution.
This can supplement the conservation information pro-
vided by MSA.
PROSITE language is one of the formal ways to

express a pattern [9]. A capital letter in a pattern is
called an exact symbol. For example, the pattern ‘K-x-L-
x(2)-E-x(2,3)-G’ have four exact symbols. In addition to
capital letters, a pattern also contains wildcards,
expressed by the symbol ‘x’. A wildcard can match any
letters in a biological sequence. This pattern matches
any sequence containing a substring which starts with
‘K’, followed by an arbitrary letter, followed by ‘L’, fol-
lowed by two arbitrary letters, followed by ‘E’, followed
by two to three arbitrary letters, and ends with ‘G’. Both
‘x’ and ‘x(2)’ are called rigid gaps, a gap of fixed length.
A rigid gap can match a certain number of successive
residues on which mutations are allowed. On the other
hand, x(2,3) is a flexible gap, a gap of irregular length. A
flexible gap can match a number of residues on which
not only mutations are present but also insertions or
deletions are allowed.
For proteins, the residues associated with a functional

site are not necessarily found in a local region of the
sequence [5,7,10,11]. Rather, the residues of a functional

site are commonly clustered into several local regions
that together constitute an important substructure when
the protein is folded. It is observed that within protein
families, only limited flexibility is allowed in such local
conserved regions, while large irregular gaps may be
present in between these regions as long as the inserted
or deleted segments do not affect the functionality of
the proteins [3,12-14]. In Figure 1, we provide an exam-
ple of such structured motifs. A structured motif ‘R-
x-Y-S-x(54,96)-G-x-G-x(2)-P-x(65,111)-Y-x-C-G’ is
observed on the protein Ferredoxin-NADP [Swiss-Prot
accession number: P10933] and additional 150 Oxidore-
ductase FAD/NAD(P)-binding proteins belonging to the
same protein family [InterPro entry: IPR001433] with
P10933. This motif contains three blocks, and two
inter-block gaps, ‘x(54,96)’ and ‘x(65,111)’, are quite
large and flexible. It is shown in Figure 1 that the three
pattern blocks, though largely apart in sequence, are
clustered together in three-dimensional space and cor-
porately form a binding region associated with the bind-
ing of flavin adenine dinucleotide (FAD) and
nicotinamide adenine dinucleotide phosphate (NADP)
ligands. This observation motivates the current study to
develop an algorithm for discovering sequence motifs
that contain large flexible gaps in between the clusters
of exact symbols. Though such structured motifs have
been introduced and analyzed in studies related to cis-
regulatory elements in DNA [15-18], few algorithms
have been particularly designed for protein sequence
analysis [15,19].
Discovering functional signatures with large irregular

gaps complicates mining procedures. Motif finding algo-
rithms typically use constraints to produce specific types
of patterns expected by the users. Table 1 summarizes
several well-known constraint models for handling gaps
when conducting motif finding in biological sequences.
Algorithms that consider only short conserved words
(without gaps) [5,20] or rigid gaps [4,6,21-23] efficiently
and effectively identify short motifs (model 1). However,
such models impose limitations on the search space of
the patterns that can be discovered because no inser-
tions or deletions are allowed across sequences. On the
other hand, Pratt algorithm [19] introduces the concept
of gap flexibility to enlarge the search space (model 2).
A more general type of constraint models sets the lower
and upper bound of a gap respectively (model 3). How-
ever, allowing large flexible gaps in between any two
adjacent exact symbols induces noisy patterns and also
worsens system performance [24]. Another gap con-
straint model considers a set of continuous words that
are interleaved with unlimited flexible gaps (model 4)
[7,11,14]. This model is valuable since the large inser-
tions and deletions that occur during evolution can be
properly handled. However, employing continuous
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words for locally conserved regions limits their applica-
tion in the analysis of protein sequences, in which con-
servative substitutions are frequently observed. In
addition, the unlimited gap flexibility in model 4 also
results in noises.

The model 5 presented in Table 1 was previously pro-
posed in our recent work [24] The algorithm MAGIIC
utilizes a combination of intra- and inter-block gap con-
straints to discover structured motifs like ‘A-x-C-x(2,3)-
D-F-x(10,198)-R-G-x(0,1)-D’. Such patterns have its

Figure 1 An example of structued motifs This motif is observed on the protein Ferredoxin-NADP reductase [Swiss-Prot: P10933] and
additional 150 Oxidoreductase FAD/NAD(P)-binding proteins from the InterPro entry [InterPro: IPR001433]. The motif is consisted of three local
conserved regions ‘R-x-Y-S’, ‘G-x-G-x(2)-P’, and ‘Y-x-C-G’, interleaved by two large gaps x(54,96) and x(65,111). When these three pattern blocks are
mapped onto the 3D structure of Ferredoxin-NADP reductase, it is shown that all the three blocks are close to the FAD/NAD(P) binding site.
Pattern blocks are plotted in sticks using different colors. The long gap between the first and the second blocks (the second and the third
blocks) is plotted with ribbons in orange (purple). The ligands FAD and NADP are shown as ball-and-stick in blue and red, respectively.

Table 1 Constraint models of gapped motifs employed in previous studies

Gap constraint
models

Descriptions Examples of existing
algorithms

Model 1 At least L non-wildcards should be present in a pattern of maximum length of W. (e.g. ‘A-x-K-H-x(2)- E’) Teiresias [6] and
SPLASH [4]

Model 2 A gap with a maximum flexibility FL is allowed between any pair of pattern symbols; related
constraints: maximum number of flexible gaps, maximum product of each flexibility. (e.g. ‘A-x(2,3)-W-x-

H-(4,6)-E’)

Pratt [19]

Model 3 A gap with a minimum length of LB (e.g. LB = 1) and a maximum length UB (e.g. UB = 10) is allowed
in between any pair of pattern symbols. (e.g. ‘A-W-x(1,5)-H-x(4,10)-E’)

Ref. [35,36]

Model 4 A gap of any length (denoted as *) is allowed in between any pair of continuous words in a pattern;
related constraints: minimum length of continuous words. (e.g. ‘A-W-D-A-x(*)-H-E-D-x(*)-K-R’)

Ref. [7,11,14]

Model 5 a gap with a minimum length of LB and a maximum length of UB is allowed in between any pair of
symbols in a pattern block; a gap with a minimum length of LB” and a maximum length of UB” is

allowed in between any pair of pattern blocks; related constraints: minimum length of pattern block; (e.
g. MAGIIC [24]:’A-W-x(2,3)-H-x(45, 60)-E-x-D-x(1,2)-K’, a pattern block is underscored), RISOTTO [15] (e.g. R-

G-I-T-I-T-x(16,18)-P-G-H-A-D-F, one mismatch is allowed in a pattern block).

MAGIIC [24] and
RISOTTO [15]
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symbols clustered into many pattern blocks, where the
gaps within a pattern block are called intra-block gaps
and the gaps between two successive blocks are called
inter-block gaps. We have demonstrated in the previous
study [24] that using the combination of intra- and
inter-block gap constraints greatly improves mining effi-
ciency. The MAGIIC patterns are similar to the struc-
tured motifs proposed for discovering cis-regulatory
elements [15]. Though initially developed for mining
DNA sequences, the package RISOTTO can also be
used for mining protein sequences.
After largely using MAGIIC to identify functional

motifs of protein sequences, we observed that restricting
intra-block gaps to only rigid gaps can further refine the
mining results greatly. In this regard, the later proposed
web server MAGIIC-PRO simply employs rigid intra-
block gaps to handle local mutations. In MAGIIC-PRO,
the maximum length of a rigid intra-block gap is set to
a small value, such as two or three. Regarding the inter-
block gaps, both MAGIIC and RISOTTO set the mini-
mum (a lower bound) and maximum (an upper bound)
distances between blocks in advance. When developing
MAGIIC-PRO, we observed that setting the minimum
and maximum distances between blocks prior to motif
discovery is very difficult. This problem can be resolved
when a query protein is involved during pattern mining.
That is, the minimum and maximum distances between
blocks can be set dynamically according to the gaps pre-
sent in the query sequence. With the length of the gaps
observed in the query sequence, a novel constraint
named ‘maximum relative flexibility’ was designed to
calculate the lower and upper bounds that are allowed
among the homologues for this particular gap. Patterns
satisfying the constraint model proposed in MAGIIC-
PRO are called W-patterns.
This study aims at introducing the algorithm Wild-

Span for efficiently discovering W-patterns. In this
paper, we demonstrated that the constraint ‘maximum
relative flexibility’ has some good properties, and thus
aggressive pruning strategies can be employed by Wild-
Span to improve efficiency. The performance of
WildSpan is evaluated in two ways. Comparison of
W-patterns to annotated motifs in existing databases
reveals that W-patterns can capture the functional sig-
natures of proteins well. Comparison of WildSpan to
existing algorithms that perform the similar task reveals
that W-patterns are more powerful in detecting protein
functional regions than currently existing constraint
models.
In this paper, we also illustrate how WildSpan can be

invoked as the protein-based or family-based mining
mode for future proteomics applications. The mining
results of protein-based mining reveal that WildSpan
can efficiently and effectively identify functional or

structural signatures of the query protein directly from
the protein sequences. On the other hand, the mining
results of family-based mining reveal that WildSpan can
be used to identify sequence signatures of protein
families for future function prediction and sequence
annotation. The idea of protein-based mining has been
integrated in our web servers MAGIIC-PRO [8] in 2006
and iPDA [25] in 2007 for annotating protein sequences.
On the other hand, the idea of family-based mining has
been integrated in the web server E1DS in 2008 [26] for
predicting enzyme catalytic sites and residues. In sum-
mary, though several independent studies have success-
fully shown the usefulness of the constraint model W-
patterns, the design of the WildSpan algorithm has not
been previously addressed and published elsewhere. In
addition, the standalone package and open source codes
of WildSpan are now ready for downloading and can be
used for large-scale proteome studies in the future.

Results and Discussion
This section evaluates the efficiency and effectiveness of
WildSpan in identifying functional regions of protein
sequences. First, we conduct experiments on a protein-
protein docking benchmark [27] for evaluating the per-
formance of the protein-based mining mode of Wild-
Span in identifying functionally important regions of
proteins. By this dataset we demonstrate that WildSpan
is capable of identifying sequence motifs that usually
contribute to forming local structures of proteins and
are related to functional interfaces. Next, we execute
WildSpan in family-based mining mode, and investigate
the potential of the W-patterns to serve as diagnostic
patterns for a protein family. After that, we investigate
the effect of algorithm parameters on the mining results,
and finally the scalability of WildSpan is evaluated using
datasets containing different numbers of input
sequences as well as with different maximum lengths.
All the experiments are conducted on a 3.4 GHz Intel
PC machine with 2 GB main memory, running Linux
Fedora 9 operating system.

Experiments on detection of protein functional regions
The protein-based mining mode of WildSpan aims at
discovering functional regions for a query protein based
on a set of homologues found in sequence databases.
The performance of WildSpan in this task is evaluated
from two aspects: (a) whether the blocks separated in
sequence cluster together in three-dimensional protein
structure; and (b) whether the conservation information
provided by W-patterns is more function-related than
that derived from MSA. On the other hand, the family-
based mining mode of WildSpan aims at deriving motifs
that characterize the functional signatures of a given
family. The performance of WildSpan in this task is
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evaluated by investigating the accuracy of function clas-
sification by using W-patterns, compared with the
curated patterns provided in PROSITE and the patterns
discovered by three existing motif finding packages.
Protein-based mining
For protein-based mining, it has been demonstrated in
our previous study [28] that the W-patterns can be used
to facilitate identifying the binding interface of protein-
protein complexes. Here, we repeated the same evalua-
tion procedure by using the same benchmark, the
protein-protein docking benchmark 2.0 established by
the ZDOCK team [27], but recollect the homologue set
for each query protein from a newer version of sequence
databases (Oct. 10, 2008).
The complete procedures for identifying interacting

interfaces for a query protein are as follows:
(1) For a query protein chain, the input data (homolo-

gues of the query, 150 at most) fed to WildSpan was
obtained by performing PSI-BLAST [29] against Swiss-
Prot database [30] using BLOSUM62 substitution matrix
and an E-value cut-off of 0.01. The sequences nearly
identical to the query protein (sequence identity > 90%)
or with a low identity (sequence identity < 30%) were
excluded from the input data. If the homologues of
query protein are not sufficient in Swiss-Prot database
(< 5 homologues), the process of collecting homologues
was executed one more time against the non-redundant
(NR) database [29].
(2) Invoking WildSpan for pattern mining: at least one

W-pattern with five blocks is discovered for each query
protein. Different settings regarding the number of
blocks in a W-pattern have been tested from two to six,
while the setting ‘five’ achieved the best performance
(data not shown). The maximum relative flexibility is set
as 50%. Other parameter settings remain as default. The
discussions regarding how the default settings of Wild-
Span were determined can be found in Additional file 1.
Like other motif finding algorithms, it is challenging to
have all the parameters set to proper values in a single
run of WildSpan. A loose setting of parameters results
in too many patterns that confuse the users, while a
tight setting results in no patterns at all. To achieve the
goal of delivering a five-block W-pattern with a support
as high as possible for each query protein, we follow a
procedure of automated parameter tuning when invok-
ing WildSpan. A flowchart illustrating how WildSpan
was invoked with different parameter settings to com-
plete the mining task was provided in Figure A1.2 of
Additional file 1.
(3) In the end of motif finding, a consensus motif that

merges all the discovered W-patterns is examined for
evaluating the mining results for each query protein.
Among the 220 protein chains in this benchmark, 217

protein chains can find sufficient (≥5) homologues for

motif discovery. For all the 217 query proteins, Wild-
Span successfully found at least one motif containing
five blocks. There are in total 1011 motif blocks discov-
ered by WildSpan. Each block contains 10 residues in
average, including positions that allow for mutations. In
Figure 2, the distribution of the length of inter-block
gaps observed on the 217 query proteins is provided.
More than one-fourth (29%) of the inter-block gap have
a length longer than 30 residues. Though these blocks
are interleaved with long gaps in sequence, it is shown
in Table 2 that the conserved blocks in W-patterns
usually cluster together in space (92.7% of the discov-
ered pattern blocks contains an atom that is within 5Å
to an atom of another block belonging to the same W-
pattern). This proportion is significantly higher than
that of a randomly generated motif (80.1%) containing
five blocks, which each contains 10 residues.
The results above reveal that some of the residues in

W-patterns might be conserved for structure conforma-
tion. The next question to answer is whether the resi-
dues in W-patterns are conserved for function
conservation. In this regard, we further evaluate the
quality of a W-pattern by calculating the proportion of
interface residues in a W-pattern. It is shown in Table 3
that 23.6% of the residues in the W-patterns are close to
the binding partner in protein-protein complexes within
5Å. Since MSA is widely adopted to discover conserved
residues for the query protein with respect to its homo-
logues, the conserved residues detected by techniques
based on MSA were compared here. To compare with
MSA, we calculated the conservation scores based on
the alignment of Clustal-W using the iPDA web server.
In Table 3, it is shown that only 18.7% of the conserved
residues detected by MSA are interface residues. This
reveals that WildSpan is able to discover more con-
served residues that are related to protein function.
Family-based mining
In this experiment, we show the potential of the W-pat-
terns found by invoking the family-based mining mode
of WildSpan to serve as the diagnostic patterns for pro-
tein families. Instead of using only one pattern as the
classification rule, we propose using multiple patterns as
the discriminator. The PROSITE database contains diag-
nostic patterns for protein families, domains, and func-
tional sites. The ten largest PROSITE groups are
collected as the training data (PA10F), and the W-pat-
terns found by the family-based mining mode of Wild-
Span will be compared with the PROSITE patterns of
that input set. It is nominally required that each pattern
contains at least three pattern blocks, but patterns con-
taining nine or more exact symbols though only belong-
ing to one or two blocks will also be reported and
selected. When these ten PROSITE families were ana-
lyzed using WildSpan, the maximum relative flexibility
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of an inter-block gap is set as fmax = 50% and the other
parameters are set as default.
The protein sequences of each family in PA10F were

collected based on the functional annotation in an ear-
lier release of Swiss-Prot database as shown in Table
A2.1 of Additional file 2. Meanwhile, all the protein
sequences collected from a recent release of Swiss-Prot
database were adopted as the testing data. A sequence is
categorized as a positive sample as long as it matches
any of the patterns derived by WildSpan. The sensitivity
(TP/(TP+FN)), precision (TP/(TP+FP)) and specificity
(TN/(TN+FP)) of the selected patterns are compared
with those of the diagnostic pattern from the PROSITE
database, where TP, FP, TN, and FN denote the number
of true positives, false positives, true negatives, and false
negatives, respectively. It should be noted that the train-
ing and testing procedures adopted here are not like a

standard machine learning approach in two ways. First,
no negative samples are involved in the training proce-
dure. With the positive sequences only, motif finding
algorithms are expected to achieve the maximum sensi-
tivity rate over the input set under the user-specified
constraints. Second, most of the training samples are
included in the testing data as well. In this regard, it is
expected that the sensitivity rates should be high, but
obviously not all the methods fulfil this expectation.
Another focus will be on how good the specificity rates
can be achieved by different methods.
Table 4 reveals that W-pattern is good in characteriz-

ing new proteins (eliminating false positives while keep-
ing satisfied sensitivity rates). The predictions are
compared to PROSITE patterns and the motifs discov-
ered by motif-finding algorithms, RISOTTO, Pratt, and
Teiresias. While providing a competitive predicting

Table 2 Comparison of W-patterns with randomly generated patterns

Number of predicted
blocks

Number of blocks in
average

Length of predicted blocks in
average

Cluster
propensity

W-patterns 1011 4.7 10 92.7%

Randomly generated patterns (average of
10 rounds)

1041 4.8 9.4 80.1%

The clustering propensity of W-patterns generated by WildSpan was compared with randomly generated patterns. The experiments were tested on the 217 of
220 protein chains (PP220) in the protein-protein benchmark (no homologues can be found for the three cases: 1ml0_A, 1ml0_B, 1udi_I).

Figure 2 Distribution of inter-block gap length observed among the query proteins of the protein-protein docking benchmark.
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ability when compared to the PROSITE patterns, we
observed that the W-patterns derived by WildSpan pro-
vide more complete and precise signatures regarding the
binding regions than the PROSITE patterns, as exempli-
fied in Figure 3. Complete results for protein function
classification are shown in Table A2.2 of Additional file
2. It is concluded that W-patterns perform similarly to
the curated patterns in PROSITE and outperforms the
motifs discovered by the other three constraint models.
We observed that the false positives reported in Table

4 are not really wrong predictions. For example, most of
proteins are annotated in another database (i.e. Pfam) as
the target function. In Table 5, we provided the details
about the number of false positives that can actually
find annotation from another database. These results
show the potential of the W-patterns in predicting pro-
tein functions with both high sensitivity and specificity.
This also explains why the E1DS server [26] performs
well in predicting catalytic sites and residues when
invoking the family-based mining mode of WildSpan to
construct the signature database.

Performance analysis
In this section, we investigate the efficiency of WildSpan
in identifying W-patterns based on the ten datasets in
PA10F.
Performance study on pattern pruning
To evaluate the efficiency of WildSpan with the pro-
posed pruning strategy, we evaluated the performance of
two versions of WildSpan algorithm as follows.
(a) WildSpan: the WildSpan algorithm with pruning

strategies in the second phase.

(b) WildSpan-NP: the WildSpan algorithm with
exhaustive search in the second phase by enumerating
all combinations.
The experimental results on PA10F with different

minimum support thresholds are shown in Figure 4.
For each dataset, the other parameters were set as:
�min = 3, gmax = 3, nmin= 2, and fmax = 50%, which
denote the minimum size of a block, the maximum
length of an intra-block gap, the minimum number of
blocks in a W-pattern, and the relative flexibility con-
straint, respectively. As depicted in the Figure 4, Wild-
Span is in several orders of magnitude faster than
WildSpan-NP for all the cases. When the support
threshold is high, the performance curves of WildSpan
and WildSpan-NP are close. This is because fewer can-
didates of blocks exist for higher values of minimum
support. However, WildSpan with lower supports
achieves a better reduction in terms of search space
and consequently provides a better speedup, since
there are many candidate blocks and WildSpan-NP
enumerates all the combinations, which is computa-
tionally expensive.
On the other hand, the scalability of WildSpan is

investigated by studying the effect of varying length
and input size of input datasets. The employed dataset
is the largest family PS00301 of PA10F, which contains
1099 protein sequence members, {s1, s2,..., s1099}. We
randomly selected x proteins from PS00301 as the
input data, x Î {100, 200, ..., 1000, 1099}. These eleven
input sets were used to test the scalability of WildSpan
versus the number of input sequences. Figure 5(a)
shows the analysis, and the scalability of WildSpan is

Table 3 Comparison of the conservation information provided by WildSpan with that of MSA

Total number of residues
characterized as conserved

Number of interface residues in the group of
residues categorized as conserved

Proportion of interface residues in the group of
residues categorized as conserved

W-
patterns

10268 2351 23.6%

MSA 10638 2058 18.7%

We investigated the property of W-patterns at residue level by calculating the proportion of interface residues in W-patterns. The results are compared with the
conserved residues assigned by Clustal-W (MSA). The experiments were tested on the 217 of 220 protein chains (PP220) in the protein-protein benchmark (no
homologues can be found for the three cases: 1ml0_A, 1ml0_B, 1udi_I).

Table 4 Experimental results for protein family classification

Method/Database Time used in seconds Sensitivity Precision Specificity MCC1

PROSITE - 85.717 93.043 99.996 0.857

RISOTTO 18.635 47.003 99.957 100 0.470

Pratt 1598.3 81.507 94.159 99.995 0.815

Teiresias 0.908 76.798 0.2523 41.163 0.030

WildSpan (Family-based) 89.782 99.042 97.481 99.993 0.990

The table shows the performance of family-based mining of WildSpan on protein family classification based on PA10F. The results were compared to PROSITE
annotated patterns and three other pattern mining methods: RISOTTO, Teiresias, and Pratt. The input data was prepared by collecting proteins in the release 50.9
of UniProtKB/Swiss-Prot (235673 entries), and the discovered patterns were verified through all protein sequences in the release 2010/08 of UniProtKB/Swiss-Port
(518415 entries). Fragment and partially matches were excluded in both training and testing data. The parameter values of all the methods were set as default
1 Matthews correlation coefficient (MCC): (TP×TN - FP×FN)/SQRT( (TP+FP) × (TP+FN) × (FN+FP) × (TN+FN) )
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compared with RISOTTO. We also generated another
test sets in which the maximum length y of input
sequences is restricted, y Î {100, 200, ..., 1000}. These
ten input sets were used to test the scalability of Wild-
Span when the length of input sequences is increasing.
Again, the result was compared with RISOTTO, as
shown in Figure 5(b). For both RISOTTO and Wild-
Span, the minimum support threshold is set as a
proper value such that a pattern with a support as
high as possible can be found. We have validated that
all of W-patterns with the maximum support are
directly associated with the functional sites of the
query protein by examining locations of the discovered
patterns on available protein structures.

Conclusions
This paper presents an algorithm WildSpan for disco-
vering W-patterns. Discovering W-patterns is impor-
tant in analyzing protein sequences because protein
functional motifs are usually composed of many con-
served blocks that are separated in primary sequences
but are often close to each other in 3-D structures.
The constraint model (W-patterns) and the developed
mining and pruning strategies (incorporated in Wild-
Span) is shown to efficiently and effectively deliver
information concerning co-occurred sequence conser-
vation. The derived W-patterns was previously shown
to be useful in predicting intra-molecular interactions,
identifying hot regions of protein-protein complexes,

Figure 3 A W-pattern versus the PROSITE pattern for a family of interest. The W-pattern derived by WildSpan for Phosphoglycerate kinase
(PS00111) versus the PROSITE pattern. The small numbers in patterns are the residues IDs in the PDB structure.

Table 5 Many false positives of WildSpan are not really false positives

PROSITE family False positives (FPs)/the number of FPs that actually are annotated as the target function by other databases

WildSpan (Family-based) PROSITE RISOTTO Pratt Teiresias

PS00301 196/196 0/0 1/1 8/5 341227/NA

PS00469 1/1 6/0 0/0 0/0 0/0

PS00455 115/6 23/0 0/0 0/0 350060/NA

PS00111 1/1 0/0 2/1 10/1 263012/NA

PS00113 4/2 0/0 0/0 109/7 0/0

PS01071 0/0 2/0 0/0 0/0 380979/NA

PS00627 17/4 3/0 0/0 0/0 381040/NA

PS00387 0/0 102/0 0/0 0/0 31339/NA

PS00112 0/0 0/0 0/0 0/0 31339/NA

PS00485 1/1 20/0 0/0 150/0 350533/NA

NA: information not available because the number of false positives is too large to manually validate the protein function.
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and detecting binding regions of protein-ligand inter-
actions [8,31-33]. To facilitate using the proposed
algorithm in future application, we implemented a
stand-alone program and provided a user-friendly web
server for WildSpan to help the biological community
in discovering functional regions of protein sequences

in a large scale. WildSpan was developed using C/C++
with the support of C++ Standard Template Library
under Linux, and has been tested on various GNU/
Linux platforms, including Red Hat 9.0 and Fedora 5
or higher. It should also work well with other UNIX-
like operating systems.

Figure 4 Performance comparison. This figure shows the running time of WildSpan versus WildSpan with no pruning (WildSpan-NP) on the
PA10F dataset.
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Methods
This work introduces a two-phase algorithm (called
WildSpan) to efficiently discover W-patterns when given
a query sequence along with a set of homologous
sequences. In the first phase, WildSpan constructs the

complete set of blocks with rigid-length gaps using a
bounded-gap prefix-growth approach. In the second
phase, WildSpan discovers W-patterns by connecting
any pairs of candidate blocks with large flexible gaps.
Several pruning strategies are employed in the mining

Figure 5 Study of scalibility of WildSpan. Study on the effect of varying the number and sequence length of input sequences of input
sequences fed to WildSpan based on the largest dataset (PS00301) of PA10F. (a) Analysis of varying the number. (b) Analysis of varying length
of input sequences fed to WildSpan.
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process to improve the performance. This section first
formally describes the problem statement and the asso-
ciated terminology. After that, the algorithm WildSpan
is described step by step.

Problem Statement
Given a query sequence Sq, a sequence database D, and
a parameter set θ regarding pattern block, W-pattern
and gap constraints, the algorithm will find the com-
plete set of closed W-patterns (the definition of closed
patterns is provided in Additional file 3) present in the
sequence database D such that each W-pattern satisfies
the constraints in θ and its matched sequences include
the query sequence Sq. The parameter set θ includes the
minimum support (minimum occurrences) of the
W-pattern, the minimum number of blocks in a W-
pattern, the minimum number of exact symbols in a
block, the maximum length of an intra-block gap
between two adjacent exact symbols in a block, and the
maximum flexibility of an inter-block gap between two
adjacent blocks in a W-pattern.
A block or W-pattern is called ‘satisfied’ if it agrees

with all the user-specified constraints. Each constraint
will be defined when it is first used in the description of
the algorithm.
Definition 1. (Sequence and sequence database)
A sequence over an alphabet Σ is a finite sequence of
symbols belonging to Σ, e.g., protein sequence is
sequence over a 20-letter alphabet. For any sequence S=
〈a1...am〉, a sequence Sx is called a subsequence of S,
if Sx can be obtained by deleting zero or more symbols
from sequence S. We use S[i..j] to denote the substring
〈ai...aj〉 (contiguous subsequence) of S, which starts at
position i and ends at position j of S, for 1 ≤ i ≤ j ≤ m.
In particular, S[1..i] is the prefix of sequence S that ends
at position i, and S[i..m] is the suffix of sequence S that
begins at position i. The length of sequence S, denoted
as m, is defined as the number of symbols in S. An
input sequence database D contains a set of sequences.
In general, the input sequence database is a set of pro-

tein sequences that are presumed to be functionally or
evolutionarily related to the query protein (the first
sequence in D). Patterns found in protein sequences can
be expressed in PROSITE language. For our purpose we
need a more formal definition as below.
Definition 2. (Pattern)
A pattern P can be written as P = a1-x(i1, j1)-a2- x(i2,
j2)-...-x(ip-1,jp-1)-ap in PROSITE language, where a1,...,ap
are the exact symbols of P, and x(ix, jx) are the wildcard
regions (i.e. gaps) of P for ix ≤ jx (1 ≤ x <p). A pattern Q
is a sub-pattern of P if Q can be obtained by deleting
one or more exact symbol(s) from P. Conversely, P is a
super-pattern of Q. We say that a sequence S matches
the pattern P if S contains a substring that can be

derived from P by substituting each wildcard symbol ‘x’
by an arbitrary symbol from Σ. The set S/P stands for
all the substrings of S that match pattern P. The nota-
tion x(n,m), 0 ≤ n <m, is used for a wildcard region with
minimum length gap of n and maximum length gap of
m, and x(n) stands for a rigid-length n gap. The wild-
card “-x(n)-” is simplified as “-” if n = 0, and is repre-
sented as x if n = 1.
The first constraint of the algorithm WildSpan is the

minimum support constraint l.
Definition 3. (Minimum support constraint)
The support of a satisfied pattern P (block or W-pat-
tern) is defined as the percentage of the distinct input
sequences S Î D such that S matches P under the con-
straints in θ. Such matched sequences are called sup-
porting sequences of P. On the other hand, the non-
matched sequences of P in D are called excluded
sequences of P. A pattern P will be reported if and only
if its support is greater than or equal to the minimum
support constraint l and satisfy all constraints in θ.
The minimum support constraint is critical to the

quality of mining results, but it is difficult to determine
in advance since the minimum support of satisfied pat-
terns cannot be accessed before they are discovered. A
lower value on this constraint yields more patterns. In
this regard, this parameter can be set in the following
way: WildSpan begins with a large support, e.g. 100%,
and decreases this setting gradually until a desired num-
ber of satisfied patterns have been found.
Phase 1: identifying rigid-gapped blocks The first
phase of the WildSpan algorithm finds all of the closed
blocks with a support >l and which satisfy the con-
straints concerning a block. The definitions of a block
and related constraints are as follows.
Definition 4. (Block and intra-block gap)
A block (short for pattern block) Ψ = a1-x(i1)-a2-x(i2)-
...-x(ib-1)-ab is a short pattern in which only rigid-length
gaps are allowed. The size of a block is defined as the
number of exact symbols inside it. The gap between any
two adjacent symbols within a block is called an intra-
block gap. The maximum length of an intra-block gap is
set by the constraint gmax and the minimum size of a
block is specified by the constraint �min.
To grow a block from scratch when gaps are consid-

ered, we invoke a procedure called prefix-growth with
bounded gaps (C-bounded-prefix-growth). The procedure
grows the prefix of a pattern and makes it longer by
building and scanning its projected database under the
rigid-length gap constraints.
Definition 5. (Projected database)
Let Ψ be a growing block, the projected database of Ψ is
a complete collection of suffix of sequences ξ, where
〈cξ〉 is a suffix of a given sequence S Î D, and c Î
S/Ψ.
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The technique of projected database is used recur-
sively to project a sequence database into a smaller
search space with respect to the growing pattern Ψ as
prefix, and then the mining procedure scans the pro-
jected database with the consideration of gap constraints
to count the support of symbols. A symbol is called a
frequent symbol if the number of its occurrences satis-
fies the minimum support threshold. All of the locally
frequent symbol a are appended to Ψ with a gap i to
constitute a longer pattern: Ψ ’ = Ψ-x(i)-a.
The arguments of C-bounded-prefix-growth include a

block Ψ and its projected database. Here, we present an
example of scanning a projected database in Figure 6(a).
This procedure takes a pattern Ψ = ‘C-x-H’ as input and
tries to extend it under the user-specified intra-block
gap constraints. In each call of C-bounded-prefix-growth,
the search space of finding the next pattern symbol is
bounded by the maximum length of an intra-block gap.
A symbol in Σ is regarded as the candidate of the next
symbol if the number of its occurrences in the projected
database satisfies the minimum support threshold l and
its supporting sequences include the query protein Sq.
Each symbol is appended to the current pattern one at a
time, and the resulting new block Ψ1 (in this example,
Ψ1 = ‘C-x-H-x-R’) is used as the argument for the next
call of C-bounded-prefix-growth, along with a possibly
smaller projected database, because adding one more
symbol to the current pattern reduces the size of the
projected database. The process is recursively repeated
until no satisfied symbol can be found in the current
projected database.
Phase 2: growing long W-patterns The second phase of
the WildSpan aims to grow long patterns (W-patterns)
that are composed of two or more blocks spanning
large wildcard regions in protein sequences. Here we
formally define what a W-pattern is.
Definition 6. (W-Pattern and inter-block gap)
A W-pattern P = Ψ1-x(s1,e1)-...- x(sp-1,ep-1)-Ψp, where Ψ1,
Ψ2 and Ψp are the rigid-gapped blocks derived in phase
1. Any pair of adjacent blocks is connected by an inter-
block gap, x(si,ei) for si ≤ ei (1 ≤ i <p), which matches at
least si and at most ei arbitrary residues between blocks
Ψi and Ψi+1. The flexibility of an inter-block gap x(si,ei)
is defined as ei - si + 1.
When the flexibility of an inter-block gap x(si,ei)

between two adjacent blocks is large, it implies that the
pattern P spans a wildcard region and the length of the
region is variant in its supporting sequences. It can be
imagined that the mining results would be noisy if the
growth of long patterns were not well confined. How-
ever, determining the extent of the flexibility of a wild-
card region in advance is difficult. Fortunately, in the
problem considered herein, this issue can be tackled by
considering a relative flexibility constraint with respect

to the length of the inter-block gap observed in the
query sequence.
Definition 7. (Relative flexibility constraint of inter-block
gaps)
A block Ψi+1 is going to be appended to an existing W-
pattern of which the last block is Ψi. Let l be the length
of an inter-block gap in the query sequence Sq, connect-
ing blocks Ψi and Ψi+1. The lower and upper bounds of
this inter-block gap are defined as (1 - fmax)×l and (1 +
fmax)×l, respectively, where fmax is called the relative
flexibility constraint. The resultant new W-pattern is
satisfied if the number of supporting sequences that
satisfies the lower and upper bounds of the inter-block
gaps is equal to or exceeds the minimum support con-
straint l.
Here we present an example of growing W-patterns

when the constraint of relative flexibility is adopted.
Let the minimum support threshold l be 60%, the
minimum length of block �min be 3, the maximum
intra-block gaps gmax be 2, the maximum relative flex-
ibility fmax be 50%, and the minimum number of
blocks in a W-pattern nmin be 2. Following the exam-
ple used in Figure 6(a), the input sequence database
has three satisfied blocks as shown in Figure 6(b): ‘C-
x-H-x-R’, ‘T-W-K-G’, ‘D-W-x(2)-S’. An advantage of
specifying a query sequence in advance is that the
repeats present in protein sequences can be properly
dealt with. As presented in Figure 6(a), the two
instances of block ‘C-x-H-x-R’ will be treated as two
distinct block instances and they are distinguished by
their starting positions, 1 and 10, in the query
sequence Sq. There are three satisfied W-patterns, as
shown in Figure 6(c), according to the relative flexibil-
ity with respect to the query sequence Sq. The first W-
pattern has four blocks with supporting sequences Sq
and Sx; and the second W-pattern has two blocks with
supporting sequences Sq, and Sx; the third W-pattern
has two blocks with supporting sequences Sq, Sx, and
Sy. Finally, the example of maximum relative flexibility
for the third W-pattern is shown in Figure 6(d).

Pruning strategy
A prefix-tree (or trie) is an ordered tree data structure
for storing strings or sequences in a way that allows for
fast pre-order traversal nodes. The branching factor is
the number of descendants in the prefix tree. All the
descendants of a node have a common prefix of the
string associated with that node. As shown in Figure 6
(a), the branching factor in each call of the C-bounded-
prefix-growth procedure is bounded by one plus the
maximum length of an intra-block gap, 1+gmax. On the
other hand, the branching factor of B-bounded-prefix-
growth that is invoked in the second phase depends to
the number of blocks derived in the first stage, which is
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Figure 6 A running example. (a) A sample input sequence database (SDB) containing Sq (reference sequence/query sequence), Sx and Sy. The
solid arrows show the scanning range of the bounded-prefix-growth procedure under the intra-block gap constraint (gmax = 2) with respect to
the pattern block ‘C-x-H’ (C - H) marked by black frames. The red, blue and green solid arrows denote the scanning residues with ‘C-x-H’ as the
prefix and with gap lengths of zero, one, and two, respectively. Two other satisfied pattern blocks are marked by distinct background colours.
The symbol ‘-’ in the sequences represents the residues that cannot contribute to forming any patterns in this example; (b) Three satisfied
pattern blocks; (c) Three satisfied W-patterns; (d) An example of how the maximum relative flexibility with respect to the reference sequence Sq
is employed to discover W-patterns.
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usually large. Aggressive pruning strategies are desired
to achieve high efficiency of the proposed algorithm.
These are described as below.
Both C-bounded-prefix-growth and B-bounded-prefix-

growth grow patterns by searching the solution space in
a depth-first manner. In this case, an algorithm must
know when a branch can be pruned to reduce searching
cost. The pruning strategies described in this subsection
can be adjusted respectively for different phases of the
WildSpan algorithm, in which different building compo-
nents and constraints are considered. A node in a pat-
tern tree of the solution space is promising if it
corresponds to a substructure (a sub-pattern) of a valid
solution (a pattern) without violating the user-specified
constraints. To achieve high efficiency, a growing pat-
tern should be pruned immediately as soon as it has
been detected as a non-promising node.
The pruning of a node is based on exploiting the anti-

monotonic property of this problem [34]. A constraint
C is anti-monotonic if a sequence b that satisfies C has
the property that every non-empty subsequence of b
also satisfies C. The minimum support constraint serves
as a good example to illustrate the anti-monotonic
property. If a pattern P = Ψ1-x(s1,e1)-...-x(sp-1,ep-1)-Ψp

satisfies the minimum support constraint, then a sub-
pattern that is composed of any subsets of the blocks in
P also satisfies the minimum support constraint. Since
our scanning procedure B-bounded-block-growth grows
a W-pattern from a single block and tries to extend it
by appending another block to it as the suffix of a new
longer W-pattern, the anti-monotonic property can be
exploited in the following way.
Pruning strategy 1
Let a pattern P be satisfied. If P’ = P-x(sp’, ep’)-Ψp’ fails
to be a satisfied pattern, then all of the patterns using P’
as the prefix, P-x(sp’, ep’)-Ψp’-x(sp“, ep“)-Ψp“ also fail to
be satisfied. Thus, all the prefix-tree descendants nodes
of P’ can be pruned.
Pei et al. [34] proved that the minimum support con-

straint is anti-monotonic. The proof is straightforward,
since a sub-pattern always matches more sequences in
the database. Accordingly, this constraint works well
with pruning strategy 1 in both phases of the WildSpan
algorithm. The proposed relative flexibility constraint of
inter-block gaps also has the anti-monotonic property.
Theorem 1. The relative flexibility constraint on the

inter-block gaps is an anti-monotonic constraint. Given
a pattern P = Ψ1-x(s1,e1)-...-x(sp-1,ep-1)-Ψp, if P satisfies
inter-block flexibility constraint, then so do all of its
sub-patterns P’ (P’ can be obtained by deleting one or
more blocks from pattern P.)
Proof: If P satisfies the relative flexibility constraint of

inter-block gaps fmax, it implies that every inter-block
gap in P satisfies the same constraint. For a sub-pattern

P’, which is derived by deleting one block of length c
from P in between two inter-block gaps of lengths a
and b and of relative flexibilities fa and fb respectively,
the maximum length of the resultant new inter-block
gap equals to a×(1 + fa) + b×(1 + fb) + c, and the mini-
mum length of the resultant inter-block gap equals a×(1
- fa) + b×(1 - fb) + c. Given that fa ≤ fmax and fb ≤ fmax,
we have a×(1 + fa) + b×(1 + fb) + c ≤ (a + b + c)×(1 +
fmax) and a×(1 - fa) + b×(1 - fb) + c ≥ (a + b + c)×(1 -
fmax), which means the sub-pattern P’ also satisfy the
same constraint fmax. This induction can be applied
recursively if more than one block is deleted from P to
form P’. Hence we can deduce that the relative flexibility
constraint of inter-block gaps is an anti-monotone
constraint.
The anti-monotonic property can be exploited more

aggressively in the way described below.
Pruning strategy 2
Let a pattern P be satisfied. If P’ = P-x(sp’, ep’)-Ψp’ fails
to be a satisfied pattern, all patterns in the form of P-x
(sp“, ep“)-Ψp“-x(sp’’’, ep’’’)-Ψp’ also fail. Thus, for all other
branches of the growing pattern P, for example, growing
P-x(sp“, ep“)-Ψp“, Ψp’ is no longer a candidate block.
The upper bound constraint of a gap is not anti-

monotonic, but it is prefix anti-monotonic [35]. A con-
straint Cp is called prefix anti-monotonic if for a
sequence b that satisfies Cp, it implies that every prefix
of b also satisfies Cp [34]. Therefore, in the first phase,
the procedure C-bounded-prefix-growth adopts a prefix-
spanning mechanism, ensuring that the prefix of pattern
P will be explored before pattern P. If a pattern does
not satisfy the maximum gap constraint, then any pat-
tern with that pattern as the prefix cannot satisfy the
same constraint. Hence, pruning strategy 1 can be
applied. Furthermore, when a query protein is involved
during the mining process, it is regarded as one of the
constraints. This constraint can also be easily proven to
be anti-monotonic. In summary, pruning strategy 1 is
adapted in both phases of WildSpan and pruning strat-
egy 2 is applied only in the second phase.

WildSpan algorithm
The WildSpan algorithm finds all the satisfied patterns
with respect to a query sequence in two phases based
the above strategies of search space pruning. In the first
phase, WildSpan quickly mines all the closed blocks
satisfying intra-block constraints with fixed-length gaps
by using C-bounded-prefix-growth procedure, which
constitute the building blocks of the W-patterns. After
that, in the second phase, WildSpan discovers all the
closed W-patterns satisfying inter-block constraints by
connecting satisfied blocks found in the first phase with
flexible gaps using B-bounded-prefix-growth procedure.
The efficiency of WildSpan in finding W-patterns with
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large irregular gaps is ensured by exploiting the prefix
anti-monotone characteristic of the new constraint
model.
Based on the above algorithm description, we have the

pseudo-code of WildSpan as shown in Figure A4.1 of
Additional file 4, and two sub-procedures C-bounded-
prefix-growth and B-bounded-prefix-growth are pre-
sented in Figure A4.2 and A4.3, respectively.

Protein-based mining
The protein-based mining is designed for discovering
protein functional regions of the query protein by refer-
ring to a set of its homologues. The default settings for
W-patterns is: containing at least three blocks in one
W-pattern and at least three conserved symbols in each
block; requiring the length an intra-block gap is at most
three, and the flexibility of an inter-block gap is no
more than 50% with respect to the gap length observed
on the query sequence. It is illustrated in Additional file
1 why this setting is suggested. WildSpan starts mining
with the goal of finding the most highly supported W-
patterns. For example, a support of 100% means that all
the input set, including the query protein, satisfy the W-
pattern. If such W-patterns do not exist, WildSpan
decreases the setting gradually until at least one satisfied
W-pattern has been found. All the results reported in
this study are based the default settings, though the
users can tighten or relax the constraints to improve the
mining quality in different applications.

Family-based mining
For applications of finding family signatures, the limita-
tion of the proposed constraint model is that it might
not be possible to find a satisfied W-pattern that
matches all of the input sequences in a single run of
protein-based mining. Hence, we proposed an iteratively
mining strategy, family-based mining, for collecting a set
of satisfied W-patterns that together serve as the diag-
nostic W-patterns for the input sequences. It is designed
to proceed in the following manner: in the first run of
WildSpan, the sequence of median length is selected
from the input set as the query sequence. At the end of
the first run, the W-pattern with the maximum support
is picked. If not all of the input sequences match the
selected W-pattern (such remaining sequences that do
not match any of the selected W-patterns are called
excluded sequences), the median-length sequence from
the excluded sequences are assigned as the query
sequence in the next call of WildSpan. In the second
run, the W-pattern that matches the most excluded
sequences of the first run will be picked. This procedure
is repeated until the set of selected W-patterns covers
all of the input sequences or no more W-patterns can
be found from the remaining sequences.

Availability and requirements
Project name: WildSpan
Project home page: http://biominer.csie.cyu.edu.tw/

wildspan
Mirror site: http://biominer.bime.ntu.edu.tw/wildspan
Operating system(s): Linux
Programming language: C/C++
Other requirements: none
License: GNU GPL

Additional material

Additional file 1: The analysis on the effect of changing parameter
settings. This file provides the analysis on the effect of changing
parameter settings of WildSpan on the mining results.

Additional file 2: Experimental datasets and results for protein
family classification. This file provides the information of input datasets
and complete results for the experiments of protein family classification.

Additional file 3: Closure checking schema. This file provides the
description of the closure checking schema employed by WildSpan to
generate concise results.

Additional file 4: The complete pseudo codes for the WildSpan
algorithm. This file provides the complete pseudo codes for the
WildSpan algorithm.
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