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Abstract

Background: Single-molecule force spectroscopy (SMFS) is a technique that measures the force necessary to
unfold a protein. SMFS experiments generate Force-Distance (F-D) curves. A statistical analysis of a set of F-D
curves reveals different unfolding pathways. Information on protein structure, conformation, functional states, and
inter- and intra-molecular interactions can be derived.

Results: In the present work, we propose a pattern recognition algorithm and apply our algorithm to datasets
from SMFS experiments on the membrane protein bacterioRhodopsin (bR). We discuss the unfolding pathways
found in bR, which are characterised by main peaks and side peaks. A main peak is the result of the pairwise
unfolding of the transmembrane helices. In contrast, a side peak is an unfolding event in the alpha-helix or other
secondary structural element. The algorithm is capable of detecting side peaks along with main peaks.
Therefore, we can detect the individual unfolding pathway as the sequence of events labeled with their
occurrences and co-occurrences special to bR’s unfolding pathway. We find that side peaks do not co-occur with
one another in curves as frequently as main peaks do, which may imply a synergistic effect occurring between
helices. While main peaks co-occur as pairs in at least 50% of curves, the side peaks co-occur with one another in
less than 10% of curves. Moreover, the algorithm runtime scales well as the dataset size increases.

Conclusions: Our algorithm satisfies the requirements of an automated methodology that combines high accuracy
with efficiency in analyzing SMFS datasets. The algorithm tackles the force spectroscopy analysis bottleneck leading
to more consistent and reproducible results.
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1 Introduction
Mutations cause structural instabilities in a protein lead-
ing it to misfold. The misfolded protein conformation
may interrupt ion transport and signal transduction.
Protein instability and misfolding cause disease states,
including cystic fibrosis, Charcot-Marie-Tooth disease,
arrhythmias, hearing loss and retinitis pigmentosa [1].
The number of protein structures deposited each year

in the Protein Data Bank (PDB) has quadrupled over
the past decade. However, the exact structures of many
proteins remain unsolved due to the practical difficulties
in the crystallization process for X-ray crystallography

or resolving structures with NMR [2]. In the last decade
the single-molecule force spectroscopy (SMFS) method
was established for experimental investigations on pro-
teins (membrane and globular) and cells [3,4]. During
continuous stretching of a protein, the applied forces
are measured by the deflection of the cantilever and
plotted against extension, yielding a characteristic Force-
Distance (F-D) curve, as Figure 1 shows. With the help
of automated robots, repeated SMFS experiments can
be performed on a protein, resulting in thousands of
individual F-D curves. Each F-D curve exhibits a specific
pattern, which contains information about unfolding
pathways and stable intermediates, and their probabil-
ities of occurrence when unfolding the protein. For
membrane proteins the sequence of observed unfolding
peaks follows the amino acid sequence of the protein.
Fitting a peak in the F-D curve to the Worm-Like Chain
(WLC) model or another model (such as, the freely
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Figure 1 Unfolding of a membrane protein: a single molecule is attached between the tip of a cantilever and the sample, while a
force is applied to unfold and stretch the protein. The resulting Force-Distance (F-D) curve indicates protein unfolding. The force peaks are
fitted by the Worm-Like Chain (WLC) model and are correlated with unfolding of the protein’s secondary structure elements (amino acids). The
force peaks are related to energy barriers, i.e., energetically favored regions of the protein structure [13].
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jointed chain (FJC), or the freely rotating chain (FRC)),
gives us the number of already unfolded amino acids in
the protein (contour length). With the peaks and the
known secondary structure, it is possible to associate
the unfolding events to the structural domains [5,6].
To distinguish F-D curves showing different protein

unfolding pathways, and draw statistical conclusions on
the unfolding events’ locations (amino acids), their
occurrences, and their co-occurrences with other events,
one must be able to analyse a large number of F-D
curves by objective procedures [7]. The manual analysis
is known to be slow and subject to human errors [8].
There is a need for data analysis and pattern recognition
algorithms that offer fully automated processing of large
SMFS datasets on the basis of objective criteria [9]. The
scientific analysis of F-D curves should reveal the mole-
cular interactions and different unfolding pathways. So
far, various software packages have been developed to
analyze SMFS data [10-12]. In this paper, we propose an
algorithm for an automated classification and analysis of
F-D curves. We apply and evaluate our method on a
dataset of unfolding experiments performed on the bac-
terioRhodopsin (bR) membrane protein.

2 Biological datasets
2.1 Structure of the bacterioRhodopsin trimer/lipid
complex
The light-driven proton pump bacterioRhodopsin (bR)
was chosen as a model system for this study because it
represents one of the most extensively studied trans-
membrane proteins. bR converts the energy of light into
an electrochemical proton gradient, which in turn is
used for Adenosine Triphosphate (ATP) production by
the cellular ATP synthase [5]. The part of bR that tra-
verses the membrane usually consists of seven helices.
Transmembrane helices are usually about 20 amino
acids in length. Figure 2 shows the seven helices in bR
in perpendicular views [13]. The helices are connected
by loops that are exposed to the aqueous environment
on either side of the membrane and that, therefore, con-
sist of residues with polar side chains [14-16]. The bR
helices are lettered A, B, C, D, E, F and G, starting from
the N-terminus and ending at the C-terminus [17].
Figure 1 shows that the maximum rupture length of

the unfolded bR molecule would be 92 aa (~ 29 nm) if
the tip binds to the CD loop, and 158 aa (~ 50 nm) if
the tip binds to the AB loop; the last potential barrier
would be built by the G-helix. By selecting the F-D
curves exhibiting an overall length between 180-220 aa
(~ 60 - 70 nm) we are sure to analyze only curves from
bR molecules that were attached by their C-terminus to
the SMFS tip [16,18].

2.2 Analysis of bR unfolding pathway
To evaluate the quality and performance of our method,
we used a dataset on the bR protein including 26 F-D
curves. Our goal is the detection of possible unfolding
pathways in bR [19-21]. Figure 1 shows a typical F-D
curve. The force (pN) is either output by the AFM or it
is computed by multiplying the cantilever deflection
(nm) with the spring constant (pN/nm). The distance is
the tip-sample separation (nm) between the cantilever
tip and the sample surface (the length of the extended
protein); this is either output by the AFM or else it is
computed by subtracting the deflection from the Z-sen-
sor (nm).
The main unfolding pathway of bR is characterised by

the presence of three main peaks, which suggest a pair-
wise unfolding of the transmembrane helices [22]. On

Figure 2 The 3D structure of bacterioRhodopsin (the structural
model PDB:1BRR). F and G helices are blue; D and E helices are
green; B and C helices are yellow; A helix is red. [29]
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manual analysis of bR unfolding pathways it was found
that besides three main peaks that occur in most F-D
curves, other peaks referred to as side peaks occur with
smaller probabilities indicating that bR can exhibit dif-
ferent unfolding intermediates. The goal of our algo-
rithm is to match the peaks between different curves if
they correspond to the same unfolding events; then,
unfolding pathways can be distinguished on the basis of
unfolding events.

3 Methodology for Force-Distance pattern
recognition
Figure 3 provides an overview of the steps of our proce-
dure for finding unfolding patterns.

3.1 Step 1: denoise the F-D curves
The F-D curves are usually noisy, which hinders our aim
to detect peaks. Before applying our algorithm on the
dataset, we denoise each SMFS curve. Each curve is

modeled as a 2D parametric curve c(x) = [dist(x), force
(x)], where x represents the timeline of the pulling
experiment that produced the F-D curve. First, we apply
regression to remove the global noise at a large-scale;
each of dist(x), force(x) is independently denoised using
robust locally weighed scatter plot smoothing and least
squares linear polynomial fitting (RLOWESS) [23]. Fig-
ure 4 shows an SMFS curve before and after denoising.
We tried several denoising intervals, such as 11, 51 and
101 data points. With a raw F-D curve consisting of ~
1, 600 data points, we selected denoising interval of 51
points. The reason is we expect from the protein struc-
ture to observe 3 main unfolding events (peaks) and sev-
eral side peaks; while 11 and 101 points gave too many
or too few unfolding events, 51 points gave the expected
number of events. Subsequently, we interpolated each
denoised curve to a representation consisting of 50, 000
data points.

3.2 Step 2: find the derivatives of the F-D curves
Figure 5 shows how we convert each F-D curve repre-
sentation from Step 1 to a sequence of derivatives. The
derivatives show how the curve changes relative to the
distance (x-axis) and the force (y-axis). The derivatives
are then further discretised into bins (cells) based on
whether they are increasing, decreasing, or remain con-
stant. We describe an F-D curve as a sequence of frag-
ments that may be of three types, named A, B, or C;
these fragments represent changes of distance and force
in the F-D curve.
To get the derivatives we deal with each F-D as an arc

length parameterised curve c(x) = [dist(x), force(x)], such

that
∫ t
0

√
(dist′(x))2 + (force′(x))2dx = t, which implies√

(dist′(x))2 + (force′(x))2 = 1, which implies |dist’(x)| ≤
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Figure 3 The flow of the analysis procedure: First, F-D curves
are denoised. Next, we transform the curves to derivatives that
represent increasing, decreasing, or constant force. Next, we detect
the unfolding events as peaks in the curves. An alignment
procedure matches peaks between curves that correspond to the
same unfolding event. The unfolding patterns are constructed this
way, by matching corresponding unfolding events between curves.

Figure 4 A raw F-D curve before and after denoising. The main
peaks and side peaks are shown along the F-D curve.
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1 and |force’(x)| ≤ 1. In other words, arc length parame-
terised curves do not change abruptly, implying that this
parameterisation makes it feasible for us to discretise
the space of derivatives, since all derivative values will
be in the range [-1 ... 1].

Without such a bound on the space of derivatives this
approach would run into problems, since it would be
difficult to appropriately discretise a curve.
We discretise the space of derivatives for the x-axis

(distance) and y-axis (force) into 1, 000 bins. We then
represent the curve as a sequence of tuples (dxi, dyi),
each of which denotes the current derivative cell in
which the curve is located. A new tuple (dxi, dyi) is
added to the sequence of tuples whenever the curve’s
derivative changes significantly enough to warrant a new
derivative cell (Figure 5). Therefore, a linear curve
would be encoded by a single derivative cell, since its
slope is constant.
With each derivative cell we also associate the arc

length (distance) in the denoised curve that the cell cov-
ers. The arc length of a curve can be thought of as the
“length” of a piece of string if it were laid upon the
curve. Let t be the absolute length of a F-D curve seg-
ment - this is the length of a string if it was laid along
the F-D curve segment. We use the arc length to ignore
any cells that cover small F-D curve segments, as deter-
mind by a minimum threshold tsmall. The arc length of
a curve c(x) from point t0 to t is defined to be∫ t

t0
|c′(x)|dx, where |c’(x)| is the norm of the vector c’(x).

3.2.1 Translational Invariance
Figure 6 shows examples of F-D curves that are trans-
lated with respect to each other. Assume c1(x) = [dist
(x), force(x)] and c2(x) = [dist(x) + 5, force(x) + 3]. In
other words, c2 is a translated version of path c1. If we
take the derivatives c′1(x), c

′
2(x) of these two paths,

then, we notice that c′1(x) = c′2(x) for all values of x.
We use this fact to mine F-D curves that are translated
with respect to each other on the basis of their deriva-
tive changes. The F-D curve mining is invariant to the
unknown amount by which the curve was translated

Figure 5 Top: In an F-D curve, the distance (tip sample
separation) may be increasing or constant along the x-axis. The
force may be increasing or decreasing or constant along the y-axis.
A point in the F-D curve can be described as a pair, describing the
changes of distance and force, as shown in brackets. To determine
the changes along x and y axes, we get the derivatives and we
discretise them. Bottom: An F-D curve can be described as a
sequence of fragments describing the changes. Fragment A is local
maximum force, which may be a main or side peak in the F-D
curve. Fragment B is local minimum force, which separates two
unfolding events in the F-D curve. Fragment C is increasing or
decreasing force interrupted by a cliff of constant force, which may
be a side peak in the F-D curve.

Figure 6 The motivation for discretising the derivative spaces of F-D curves is translational invariance, allowing us to find similar
patterns of change in F-D curves that are translated with respect to each other. (a) The function c(x) = (x, sin(4x)) may fit a hypothetical
path in an F-D curve. (b) The derivative space c’(x) = (1, 4 cos(4x)). (c) Hypothetical paths in two F-D curves that are translated with respect to
each other will look similar in derivative space.
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by the SMFS machine. Note, that to get the derivatives,
we assume that we are dealing with differentiable func-
tions that do not have abrupt edges. Another issue to
keep in mind is that derivatives are sensitive to noise.
Therefore, denoising (step 1) is essential for dealing
with this issue.

3.3 Step 3: unfolding events
Figure 7 shows that sequences of A, B, or C fragments
in an F-D curve can describe several types of unfolding
events. Type I unfolding event is a main peak “AB”
without side peaks. The other two events include side
peaks before or after the main peak. Type II unfolding
event is a main peak “CAB”, where the side peak is
“CA”. Type III unfolding event is a main peak “ACB”,
where the side peak is “AC”. After finding a peak, one
can fit the Worm-Like Chain model to the peak. Since a

WLC maps to a specific amino acid of the protein
sequence, a WLC allows one to map an unfolding event
to the protein sequence and/or structure. The protein
structure can be colored in 3D (using Jmol) to reflect
the helices the unfolding of which corresponds to a
WLC peak.

3.4 Step 4: matching unfolding events between curves
Step 4 supports finding patterns of unfolding events in
the F-D curves, rather than simple peaks. To describe
the unfolding patterns of the F-D curves we match the
unfolding events between curves [8]. For this purpose
we use a progressive alignment, the aim of which is to
align the F-D curves by a pairwise matching of detected
unfolding events [24]. Unfolding events are matched
between F-D curves if they likely correspond to the
same helices unfolding.

Figure 7 We describe an entire SMFS curve as a sequence of fragment types: A is a local maximum, B is a local minimum, and C is a
cliff. Unfolding events in SMFS curves are categorised in three types: I. Main peak, where two bR helices unfold together. II. Main peak preceded
by a side peak, where the helices unfold stepwise, one after another. III. Main peak followed by a side peak, where one helix unfolds gradually,
and then another helix in an all-or-none manner. The events are matched to one another between the curves to detect corresponding
unfolding. On the unfolding events one can fit the Worm-Like Chain model (WLC) for polymer stretching. In turn, one can compute the delta-
distances (in amino acids) between the WLCs and view histograms of delta-distances.
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Assume a curve C, which is presented to a set of pre-
viously aligned curves A. The scores for the matches/
mismatches are chosen in the following way:

match = 1, mismatch = −1, gap = 0

The score for aligning the unfolding events in C with
A is the sum over all match/mismatch scores of
matched events between C and A. A match is assumed,
if the distance between event p Î C and p’ Î A is less
than 5 amino acids. Figure 8 shows three examples of
helix unfolding events in bR, which are within a distance
of 5 amino acids from one another. All unfolding events
in a F-D curve can be shifted by a maximum number of
30 amino acids, accounting for the location of cantilever
attachment on the C- or N-terminus of the protein
sequence. The shift S of all unfolding events in curve C
is found, which results in the best alignment score for C
and A.
3.4.1 Main peaks and side peaks
The alignment allows matching unfolding events
between curves. After the alignment, we represent an F-
D curve as a sequence of (0, 1) signs, corresponding to
whether or not an event occurs. A possible event is
represented by a sign of (0, 1). All F-D curves have the
same maximum number of possible events. The curve
alignment on the basis of the detected events allows to
find the unfolding pathways for bR.
By examining the frequency of an event over all curves

we categorise it as a main peak or side peak. A peak
with highest frequency is a main peak, while peaks of
lower frequency are side peaks. It is possible for both a
side and main peak to be found in an unfolding event of
a curve, in which case the side peak is the cliff before or
after the main peak ("CAB” or “ACB” in Figure 7).

4 Results and Discussion
Our goal is to find the different unfolding pathways of
the bR membrane protein. To this end, we use our algo-
rithm to detect the unfolding events and align them
between F-D curves, as described above. Table 1 shows
the manually curated sequences of 0 or 1 for three helix
pairs in the 26 bR curves [22]. As shown, for each helix
pair the unfolding pattern consists of a main peak and
possibly one or two side peaks.
Our goal is to evaluate how well the main and side

peaks that our algorithm detected correspond to this
manual curation. For this purpose, we evaluated over
the aligned curves how many of the detected peaks cor-
respond to the manually curated peaks. Tables 2 and 3
show 3 main peaks and 4 side peaks, respectively, which
we detected in various regions of the bR curves. For
each of the 26 bR curves, we analyzed which of the peak
detections were TP true positive or FP false positive
peaks. With TP = 83, FP = 9, clearly TP >> FP, implying
a high success rate. The last side peak at 232aa [22] was
missed in our results, which is due to noise in this
region. It is possible to detect this last peak by relaxing
the minimum threshold tsmall for the arc length, but the
tradeoff is an increase in the number of FP peaks.

4.1 Matching unfolding events in F-D curves
Figure 9 shows six F-D curves. In this example, the
three main peaks that are matched in the curves are
colored similarly. These peaks correspond to the pair-
wise unfolding of transmembrane helices in bR [13].
Side peaks have special colors and occur less frequently
than main peaks. The side peaks correspond to inter-
mediate states in the unfolding process, meaning that
the helices unfolded one after the other with an

Figure 8 The unfolding events (peaks) are matched between F-D curves if they correspond to the same helices unfolding. Left : Helices
E and D unfold in a single step. The polypeptide chain extending between the AFM cantilever tip and surface exhibits a length of 148 aa (tip-
sample separation of ~ 53 nm). Middle : Helices E and D unfold in a two-step process. First, helix E unfolds with the polypeptide chain
lengthened to 105 aa (TSS of ~ 38 nm). Second, helix D unfolds with the polypeptide chain lengthened to 148 aa (TSS of ~ 53 nm). Right :
Similar to middle, except first helix E unfolds partly, with the polypeptide chain lengthened to 94 aa (TSS of ~ 34 nm) [5]. Matched unfolding
events (peaks) are within a window of 5 amino acids (~ 2 nm) from each other, as indicated by the tip-sample separation at the end of the
peak (1aa ≈ 0.36 nm). An entire F-D curve is shifted by a terminal length of at most 30 amino acids, which results in the most matches; the
terminal length represents the location of cantilever attachment to the protein.
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intermediate step, instead of pairwise. This makes it
interesting to study the co-occurrences of main and side
and main/side peaks within bR curves.
Our analysis provides several advantages over simply

detecting minima in the derivatives of the smoothed
force curves. After matching unfolding events in all
included F-D curves, it is possible to fit the WLC
model, as Figure 9a shows. The tables show the contour
lenghts. Besides computing the contour lengths of the
WLCs, we can also distinguish the different unfolding
pathways directly in the process. The unfolding path-
ways we find give hints on the stability inside proteins.
Moreover, we can compare the wildtype protein’s
unfolding pathways with mutants of the protein under
study, or we can study the effect of a ligand.

4.2 Side peaks: co-occurrences analysis
The main peaks appear in most of the included F-D
curves and have a relatively high co-occurrence with
one another in the curves. However, the different
unfolding pathways are defined by the side peaks that

occur in a minority of curves. Different co-occurrences
are observed for various main and side peak pairs,
which define the unfolding pathways. The helices in
transmembrane proteins often stabilise one another.
Intermediate side peaks between main peaks reflect
stepwise unfolding of helix pairs and helices alone, such
as helices E and D, or B and C [25-27].
Table 2 shows that the main peaks frequently co-

occur with one another in F-D curves.
Table 3 shows that the side peaks co-occur less fre-

quently with one another.
Table 4 shows that the side peaks nearly always co-

occur with at least one main peak. This implies a syner-
gistic effect occurring between helices. Two helices
unfolding stepwise with an intermediate step (detected
as a side peak) may stabilise another pair of helices,
resulting in pairwise unfolding. In those cases where a
side peak occurs before the main peak there is a helix
unfolding gradually step-by-step, and then a helix
unfolds in an all-or-none manner [14,15]. For example,
helices F and G neighbor helices A and B and the for-
mer may stabilise the latter. Then, an intermediate
unfolding step may be observed for helices F and G.
We have also analyzed four bR mutants, as well as the

ompG protein with this algorithm [28]. Even though the
mutant proteins are known to have different unfolding
patterns, we could detect the known unfolding events.
Our results for mutant proteins corresponded to the
results of Sapra et al. [20,22]

4.3 Comparison to previous methods and runtime
Our method has similar precision and recall to the
method published previously by Marsico et al. [19]
However, our algorithm has the advantage of faster

Table 1 Unfolding of transmembrane helices in bR results
in different unfolding pathways.

Region 1
(Helices E&D)

Region 2
(Helices B&C)

Region 3
(Helix A)

Unfolding pathways

(1 0 0) (1 0 0) 100 100 10/11

(1 1 0) (1 1 0) (1 0) 100 110 10/11

(1 0 1) (1 0 1) (1 1) 100 101 10/11

(1 1 1) (1 1 1) 100 111 10/11

Total 8

The table shows the different unfolding pathways that are observable in the
membrane protein bR. Sign “1” represents the presence of an event in the
corresponding region, while “0” means no event. The analysis leads to 8
different unfolding pathways. The first unfolding pathway is given by the
pattern 100 100 10, the second by the pattern 100 100 11, which means that
in the third region we have two peaks, corresponding to the stepwise
unfolding of helix A.

Table 2 The co-occurrences of all main peaks in the
curves.

Main peak Co-occurrence frequency
(out of 26 curves)

Region contour length [aa]

1 80 15

2 143 24

3 215 26

1 & 2 80 & 143 14

1 & 3 80 & 215 15

2 & 3 143 & 215 24

1 & 2 & 3 80 & 143 & 215 14

The co-occurrences of these main peaks in the same curve were high. The
contour length comes from the fitting of the Worm-Like Chain model inside
the curves (see Figure 9a) and it corresponds to knowledge from the
literature [13,20,22].

Table 3 The side peaks do not co-occur frequently in the
same curves.

Side peak Co-occurrence frequency
(out of 26 curves)

Region contour length [aa]

1 39 9

1 97 4

2 167 10

3 201 4

1 & 1 39 & 97 2

1 & 2 39 & 167 1

1 & 2 97 & 167 2

1 & 3 97 & 201 1

2 & 3 167 & 201 1

1 & 2 & 3 39 & 97 & 167 & 201 0

Yet, most of the side peaks occur individually much more frequently in
curves. The contour length comes from the fitting of the Worm-Like Chain
model inside the curves (see Figure 9a) and it corresponds to knowledge
from the literature [13,20,22].
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detection of protein unfolding patterns. For the 26 bR
curves the method by Marsico et al. took several hours.
Our method’s total runtime for denoising, getting the
derivatives, discretising, detecting the unfolding events
and aligning the 26 curves was less than one second.
Moreover, we attempted to evaluate Punias [10] and

Hooke [12] on the manually annotated bR dataset.

These algorithms focus on fitting the Worm-like Chain
model on F-D curves in an automated fashion, and do
not focus on finding the unfolding pathways as our
algorithm; therefore a complete comparison cannot be
done. On fitting the WLC on the manually annotated
bR dataset, Punias achieved 79% precision, 53% recall
and 64% F-measure. Hooke achieved 73% precision, 45%

a)

Figure 9 In bR there are three main unfolding events, which are detected in F-D curves as main peaks. Each unfolding event
corresponds to an unfolding of helices in the bR structure. a) This figure shows the Worm-Like Chain model fit to the peak, which allows one to
map the unfolding event to a specific amino acid in the structure [13,20,22]. The three main peaks appear in most curves and have a high co-
occurrence with one another. However, the unfolding pathways are defined by the side peaks that occur in a minority of curves.
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recall and 56% F-measure. These results indicate that
our method is at least as effective as Punias and Hooke.

5 Conclusions
Single-molecule force spectroscopy is a promising
method for measuring the unfolding forces of single
molecules and cells. SMFS can analyze membrane pro-
teins in their natural membrane environment. Our main
contribution is a novel method for analyzing and classi-
fying SMFS data. Our pattern recognition algorithm is
successful in finding unfolding pathways of bR. Our
method for finding unfolding events and alignment is
much faster than a manual selection and annotation.
With our automated approach, the detection of unfold-
ing events is not subjective to the manual annotator, but
rather is based on objective criteria. Overall, our algo-
rithm gives a high success rate in observation of bR
unfolding pathways. The method also has the advan-
tages of discovering side and main peaks along with
unfolding patterns, fitting the WLC model on the peaks,
and computing the amino acid distances between con-
tour lengths. As future work, we plan to link the unfold-
ing events to structural features, such as residue-residue
contacts and membrane topology.

Acknowledgements
We thank Daniel Mueller and his group for providing the experimental data
and fruitful discussions. We thank Alexander Andreopoulos for providing
help with the derivatives and discretisation. We acknowledge funding by EU
projects Sealife and REWERSE, dresden-exists, BMBF, and Canada’s NSERC.

Author details
1Department of Bioinformatics, Biotechnological Center, University of
Technology Dresden, Dresden, Germany. 2Department of Bioinformatics and

Computer Science, University of Applied Sciences Mittweida, Mittweida,
Germany.

Authors’ contributions
BA conceptualised and implemented the methods, performed the
experiments and wrote most of the paper. DL provided the datasets and
supervised the work and the development of ideas. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 9 July 2010 Accepted: 6 June 2011 Published: 6 June 2011

References
1. Engel A, Gaub HE: Structure and mechanics of membrane proteins.

Annual review of biochemistry 2008, 127-48.
2. Tsaousis GN, Tsirigos KD, Andrianou XD, Liakopoulos TD, Bagos PG,

Hamodrakas SJ: ExTopoDB: A database of experimentally derived
topological models of transmembrane proteins. Bioinformatics (Oxford,
England) 2010.

3. Bosshart PD, Casagrande F, Frederix PLTM, Ratera M, Bippes CA, Mueller DJ,
Palacin M, Engel A, Fotiadis D: High-throughput single-molecule force
spectroscopy for membrane proteins. Nanotechnology 2008,
19(38):384014 [http://stacks.iop.org/0957-4484/19/i=38/a=384014].

4. Puech PH, Poole K, Knebel D, Müller DJ: A new technical approach to
quantify cell-cell adhesion forces by AFM. Ultramicroscopy 2006, 106(8-
9):637-644.

5. Müller DJ, Kessler M, Oesterhelt F, Müller C, Oesterhelt D, Gaub H: Stability
of bacteriorhodopsin alpha-helices and loops analyzed by single-
molecule force spectroscopy. Biophys J 2002, 83(6):3578-3588.

6. Müller DJ, Heymann JB, Oesterhelt F, Müller C, Gaub H, Büldt G, Engel A:
Atomic force microscopy of native purple membrane. Biochim Biophys
Acta 2000, 1460:27-38.

7. Dietz H, Rief M: Detecting Molecular Fingerprints in Single Molecule
Force Spectroscopy Using Pattern Recognition. Japanese Journal of
Applied Physics 2007, 46:5540-2.

8. Kuhn M, Janovjak H, Hubain M, Müller DJ: Automated alignment and
pattern recognition of single-molecule force spectroscopy data. J Microsc
2005, 218(Pt 2):125-132.

9. Puchner EM, Franzen G, Gautel M, Gaub HE: Comparing proteins by their
unfolding pattern. Biophysical journal 2008, 95:426-34.

10. Carl P, Dalhaimer P: Protein unfolding and nano-indentation software.
2004 [http://site.voila.fr/punias].

11. Struckmeier J, Wahl R, Leuschner M, Nunes J, Janovjak H, Geisler U,
Hofmann G, Jaehnke T, Mueller DJ: Fully automated single-molecule force
spectroscopy for screening applications. Nanotechnology 2008,
19(38):384020 [http://stacks.iop.org/0957-4484/19/i=38/a=384020].

12. Sandal M, Benedetti F, Brucale M, Gomez-Casado A, Samori B: Hooke: an
open software platform for force spectroscopy. Bioinformatics (Oxford,
England) 2009, 25(11):1428-30.

13. Müller DJ, Sass HJ, Müller SA, Büldt G, Engel A: Surface structures of native
bacteriorhodopsin depend on the molecular packing arrangement in
the membrane. J Mol Biol 1999, 285(5):1903-1909.

14. Janovjak H, Kessler M, Oesterhelt D, Gaub H, Müller DJ: Unfolding
pathways of native bacteriorhodopsin depend on temperature. EMBO J
2003, 22(19):5220-5229.

15. Janovjak H, Struckmeier J, Hubain M, Kedrov A, Kessler M, Müller DJ:
Probing the energy landscape of the membrane protein
bacteriorhodopsin. Structure 2004, 12(5):871-879.

16. Kessler M, Gaub HE: Unfolding barriers in bacteriorhodopsin probed from
the cytoplasmic and the extracellular side by AFM. Structure 2006,
14(3):521-527.

17. Cisneros DA, Oberbarnscheidt L, Pannier A, Klare JP, Helenius J,
Engelhard M, Oesterhelt F, Muller DJ: Transducer binding establishes
localized interactions to tune sensory rhodopsin II. Structure (London,
England: 1993) 2008, 16(8):1206-13.

18. Kessler M, Gottschalk KE, Janovjak H, Müller DJ, Gaub HE:
Bacteriorhodopsin folds into the membrane against an external force.
J Mol Biol 2006, 357(2):644-654.

Table 4 The co-occurrences of side peaks and main peaks
in curves.

Side & Main peak Co-occurrence frequency (out of 26
curves)

Region contour length
[aa]

1 & 1 39 & 80 6

1 & 2 39 & 143 8

1 & 1 97 & 80 2

1 & 2 97 & 143 4

2 & 2 167 & 143 10

2 & 3 167 & 215 10

3 & 2 201 & 143 4

3 & 3 201 & 215 4

As shown, the side peaks nearly always co-occur with a nearby main peak in
the same curve. Moreover, the first two side peaks (39aa, 97aa) co-occur more
often with the second main peak (143aa) than with the first main peak (80aa).
The main peak at 80aa also occurs, overall, less frequently in curves. The
contour length comes from the fitting of the Worm-Like Chain model inside
the curves (see Figure 9a) and it corresponds to knowledge from the
literature [13,20,22].

Andreopoulos and Labudde Algorithms for Molecular Biology 2011, 6:16
http://www.almob.org/content/6/1/16

Page 10 of 11

http://stacks.iop.org/0957-4484/19/i=38/a=384014
http://www.ncbi.nlm.nih.gov/pubmed/16675123?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16675123?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12496125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12496125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12496125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10984588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15857374?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15857374?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18550806?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18550806?dopt=Abstract
http://site.voila.fr/punias
http://stacks.iop.org/0957-4484/19/i=38/a=384020
http://www.ncbi.nlm.nih.gov/pubmed/9925773?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9925773?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9925773?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14517259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14517259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15130479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15130479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16531236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16531236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16434052?dopt=Abstract


19. Marsico A, Labudde D, Sapra T, Müller DJ, Schröder M: A novel pattern
recognition algorithm to classify membrane protein unfolding pathways
with high-throughput single-molecule force spectroscopy. Bioinformatics
2007, 23(2):e231-e236.

20. Sapra T, Besir H, Oesterhelt D, Müller DJ: Characterizing molecular
interactions in different bacteriorhodopsin assemblies by single-
molecule force spectroscopy. J Mol Biol 2006, 355(4):640-650.

21. Oesterhelt F, Oesterhelt D, Pfeiffer M, Engel A, Gaub HE, Müller DJ:
Unfolding pathways of individual bacteriorhodopsins. Science 2000,
288(5463):143-146.

22. Sapra T, Balasubramanian P, Labudde D, Bowie J, Müller D: Point mutations
in membrane proteins change energy landscape and populate different
unfolding pathways. Journal of Molecular Biology 2008.

23. Cleveland W: Robust Locally Weighted Regression and Smoothing
Scatterplots. Journal of the American Statistical Association 1979, 74:829-836.

24. Loeytynoja A, Goldman N: An algorithm for progressive multiple
alignment of sequences with insertions. Proceedings of the National
Academy of Sciences of the United States of America 2005, 102(30):10557-62.

25. Wright CF, Lindorff-Larsen K, Randles LG, Clarke J: Parallel protein-
unfolding pathways revealed and mapped. Nature structural biology 2003,
10(8):658-62.

26. Cieplak M, Filipek S, Janovjak H, Krzysko KA: Pulling single
bacteriorhodopsin out of a membrane: Comparison of simulation and
experiment. Biochimica et biophysica acta 2006, 1758(4):537-44.

27. Janovjak H, Sapra KT, Kedrov A, Mueller DJ: From valleys to ridges:
exploring the dynamic energy landscape of single membrane proteins.
Chemphyschem: a European journal of chemical physics and physical
chemistry 2008, 9(7):954-66.

28. Damaghi M, Sapra KT, Köster S, Yildiz O, Kühlbrandt W, Müller DJ: Dual
energy landscape: The functional state of the beta-barrel outer
membrane protein G molds its unfolding energy landscape. Proteomics
2010, 10(23):4151-62.

29. Essen L, Siegert R, Lehmann WD, Oesterhelt D: Lipid patches in membrane
protein oligomers: crystal structure of the bacteriorhodopsin-lipid
complex. Proceedings of the National Academy of Sciences of the United
States of America 1998, 95(20):11673-8.

doi:10.1186/1748-7188-6-16
Cite this article as: Andreopoulos and Labudde: Efficient unfolding
pattern recognition in single molecule force spectroscopy data.
Algorithms for Molecular Biology 2011 6:16.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Andreopoulos and Labudde Algorithms for Molecular Biology 2011, 6:16
http://www.almob.org/content/6/1/16

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/17237097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17237097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17237097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16330046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16330046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16330046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10753119?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16000407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16000407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12833152?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12833152?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16678120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16678120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16678120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21058339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21058339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21058339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9751724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9751724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9751724?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	1 Introduction
	2 Biological datasets
	2.1 Structure of the bacterioRhodopsin trimer/lipid complex
	2.2 Analysis of bR unfolding pathway

	3 Methodology for Force-Distance pattern recognition
	3.1 Step 1: denoise the F-D curves
	3.2 Step 2: find the derivatives of the F-D curves
	3.2.1 Translational Invariance

	3.3 Step 3: unfolding events
	3.4 Step 4: matching unfolding events between curves
	3.4.1 Main peaks and side peaks


	4 Results and Discussion
	4.1 Matching unfolding events in F-D curves
	4.2 Side peaks: co-occurrences analysis
	4.3 Comparison to previous methods and runtime

	5 Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

