
RESEARCH Open Access

Module detection in complex networks using
integer optimisation
Gang Xu1, Laura Bennett2, Lazaros G Papageorgiou1, Sophia Tsoka2*

Abstract

Background: The detection of modules or community structure is widely used to reveal the underlying properties
of complex networks in biology, as well as physical and social sciences. Since the adoption of modularity as a
measure of network topological properties, several methodologies for the discovery of community structure based
on modularity maximisation have been developed. However, satisfactory partitions of large graphs with modest
computational resources are particularly challenging due to the NP-hard nature of the related optimisation
problem. Furthermore, it has been suggested that optimising the modularity metric can reach a resolution limit
whereby the algorithm fails to detect smaller communities than a specific size in large networks.

Results: We present a novel solution approach to identify community structure in large complex networks and
address resolution limitations in module detection. The proposed algorithm employs modularity to express
network community structure and it is based on mixed integer optimisation models. The solution procedure is
extended through an iterative procedure to diminish effects that tend to agglomerate smaller modules (resolution
limitations).

Conclusions: A comprehensive comparative analysis of methodologies for module detection based on modularity
maximisation shows that our approach outperforms previously reported methods. Furthermore, in contrast to
previous reports, we propose a strategy to handle resolution limitations in modularity maximisation. Overall, we
illustrate ways to improve existing methodologies for community structure identification so as to increase its
efficiency and applicability.

Background
Networks - i.e. groups of entities (nodes or vertices)
pairs of which are linked through a form of common
property (edges or links) - have formed an efficient
representation framework for a variety of complex sys-
tems such as social groupings and internet connectivity
[1]. The analysis of biological data in systems biology
studies through the formalisms of network theory have
received particular attention recently, due to the poten-
tial benefits that such methodologies can confer in
mining the intricate relationships in metabolic networks
[2-4], signaling pathways [5], gene regulatory networks
[6] or other forms of protein interactions [7]. In general,
the abstractions offered by graph theory representations

(i) facilitate the analysis of network performance,
(ii) provide a unifying framework for comparisons of
features across different systems and (iii) assist the
mathematical characterisation of system properties and
dynamics.
Topological properties of networks are particularly

important in revealing the organisational principles of
nodes within the context of the entire system [8]. Com-
munity structures or modules are defined when a larger
density of links exists within a specific part of the net-
work than outside it [9]. Each of such modules can be
regarded as a discrete entity whose function or proper-
ties are in some way separable from other modules.
Modular structure underlies (i) the adaptability of a sys-
tem to new conditions [10] and (ii) the robustness (or
conversely the vulnerability) of the system to external
attack or other form of change in topological features
[11,12]. The analysis of pairwise or even longer-range
relationships in networks can reveal how preferential
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attachment of new nodes influences community struc-
ture [13,14], giving rise to small-world or scale-free
architectures [15].
In light of the above, the detection of modules and the

analysis of community structure in networks has the
potential to reveal the design principles of complex sys-
tems and provide important insights into how such sys-
tems are organised, how they evolve and how their
components interact. For example, in biological net-
works, the analysis of enzyme connectedness may reveal
participation in the same biological pathway, and module
detection in protein interactions reflects protein function
type or evolutionary properties [3,7,16]. Importantly, the
characterisation of gene products with previously
unknown functional properties through community
detection has the potential to aid function assignment.
Recent reviews have reported on the community detec-
tion problem in comprehensive manner [17,18].
The two major avenues to detect community structure

have been graph partitioning [19,20] and hierarchical
clustering methods [16,20-23]. Major disadvantage in
the case of graph partitioning is the absence of a termi-
nation criterion in the bisection process, while in hier-
archical clustering there is no clear indication of where
the tree should be split to yield the optimal partitioning.
Such shortcomings result in either sub-optimal parti-
tioning or unsatisfactory implementations for large net-
works. In addition to graph partitioning and hierarchical
methods, which are particularly suitable for standard
partitioning (each node belongs to a single community),
other methodologies exist to detect overlapping commu-
nities as nodes may belong to several communities, for
example, the clique percolation method, [24].
An important breakthrough in the community detec-

tion problem has taken the form of a quantitative mea-
sure to express the quality of community presence,
namely modularity. Network modularity is defined as the
fraction of all edges that lie within communities minus
the expected value of the same quantity in a graph in
which the vertices have the same degrees but edges are
placed randomly [25-27]. Usually, in our experience, net-
work modularity values of around 0.4-0.8 indicate strong
community presence. Use of the modularity metric has
transformed the community structure identification pro-
blem into an optimisation task where community struc-
tures can be determined by maximising the network
modularity through various optimisation techniques [25].
As modularity optimisation is NP-hard [28,29], effi-

cient algorithms to find the maximum modularity values
are unlikely to exist. Therefore, most approaches employ
heuristics that aim at finding near-optimal solutions
with modest computational cost. Crucial considerations
in assessing the performance of modularity optimisation
approaches are: (i) the scale and optimality handled by

modularity optimisation methods and (ii) the resolution
limit problem for small-size modules in large networks.
First, there seems to be a trade-off between network

size and optimality achieved through modularity optimi-
sation. Specifically, methods that guarantee global opti-
mal solutions for modularity maximisation are able to
operate only in small to medium-sized networks [30].
Divisive algorithms [25] were found to be prohibitively
computationally expensive for large networks. On the
other hand, methods that can be used on large net-
works, such as stochastic optimisation through simu-
lated annealing [3,31] and extremal optimisation [32],
may yield sub-optimal solutions and so may suffer poor
performance. In our own work, we have previously
reported a rigorous mixed integer quadratic program-
ming (MIQP) formulation to optimise the modularity
metric with a set of linear constraints and mixed binary/
continuous optimisation variables [30]. Due to the con-
vexity properties of the model, global optimal solutions
are achieved through the standard branch-and-bound
procedure with commercial optimisation solvers, but use
of this optimisation framework is limited to small-
medium scale networks due to NP-hardness.
Second, doubts have been raised over the use of mod-

ularity optimisation for community detection recently,
due to the observation that such procedures can reach a
resolution limit [33]. This effect essentially implies that
modules smaller than a specific scale are not detected,
as the optimisation process combines smaller commu-
nities into larger ones in order to achieve better modu-
larity. Some remedial procedures have been suggested
through re-optimising each module [33,34], tuning a
resolution parameter [35], or implementing quantitative
measures other than modularity [36].
Here, we aim to enhance the application of mathema-

tical programming to community structure identification
by: (i) developing an efficient methodology for module
detection that is capable of handling large size networks
and (ii) incorporating strategies for dealing systemati-
cally with the problem of a resolution limit in module
detection through modularity optimisation approaches.
Below, a two-stage solution approach for community
identification using mathematical programming is
described, the resolution limit in modularity optimisa-
tion is addressed via the introduction of an iterative pro-
cedure and the applicability of the proposed approaches
is demonstrated through a number of network examples
and comparisons with literature.

Methods
The solution approach presented in this paper is a two-
stage, iterative modularity optimisation procedure,
named iMod. First, a mixed integer nonlinear program-
ming (MINLP) model (MINLP_Mod) is formulated to
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obtain a feasible solution efficiently. An initial partition
with a good modularity value is selected from a set of
MINLP solutions with random starting points. Second,
the solution obtained in the first stage is improved
through an iterative optimisation procedure employing a
model that we have developed previously and was pro-
ven efficient in detecting communities in small to med-
ium size networks through a global maximum of the
modularity metric (OptMod, [30]). Overall, the iMod
approach that combines the two aforementioned stages
is intended to extend the use of mathematical program-
ming methodologies to larger-size networks. A sche-
matic representation of the iMod computational
procedure, combining MINLP_Mod and OptMod, is
shown in Figure 1.

Stage 1: Initial network partition
Given a network with N nodes and L edges, the modu-
larity metric, Q, of a network partitioned into M com-
munities is represented as:
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where Lm denotes the number of links in module m
and Dm is the degree of all nodes in module m. The
modularity metric, Q, measures the difference between
the fraction of links within communities and the
expected fraction values when links are allocated ran-
domly [25,26]. The objective function employed here is
the maximisation of the network modularity metric
shown in equation (1).
First, each node is allocated to exactly one module:
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where Ynm is a binary variable taking the value of 1 if
node n is allocated to module m; 0 otherwise.
As previously defined, Dm is equal to the sum of the

degrees of nodes allocated to module m:
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A link will be allocated to module m only when both
nodes associated with it are also in module m. There-
fore, the total number of links in module m, Lm, is
defined by the following nonlinear equality:
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where CNn is the set of nodes e connected to node n.
Overall, the resulting MINLP model (MINLP_Mod)

for determining community structures based on the
modularity metric maximisation is formulated as:
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Since global optimality of non-convex MINLP models
cannot be guaranteed, different initial solutions are
tested and the partition with the largest value of Q, is
chosen as the best division from the set of candidate
solutions. MINLP_Mod is performed for a given number
of runs, Nmax, from random initial points and the node-
module allocation with the maximum modularity value
is stored and denoted by set Im. Using Nmax = 100 pro-
vides a good representation of solution space.

Stage 2: Iterative improvement of network partition
Having selected a node-module association with maxi-
mum modularity from the previous stage (i.e. Im), mod-
ule allocation may be improved further through an
iterative fixing and releasing scheme. The general idea is
to solve a reduced MIQP formulation of modularity
optimisation that was previously proposed in [28]. Most
of the Ynm variables are fixed, which reduces the num-
ber of variables, thus resulting in a more tractable
model. Sets of nodes are released in the sense that they
are free to be re-allocated to a different module in sub-
sequent executions of the MIQP model.
This stage initially adopts the node-module allocation

obtained from stage 1 by fixing all the relevant Ynm bin-
ary variables in Im to the value of one. For the first
module, the set of nodes in the module is denoted as
REm and the set of nodes to be released (or ‘un-fixed’) is
denoted as Δ, where the size of Δ is N_R, a value chosen
according to criteria described below. The reduced
MIQP (OptMod) is solved (for details see [30]), with all
nodes in Δ released and all other nodes fixed. Im is then
updated with the solution from the reduced MIQP.
The above scheme is applied sequentially for remain-

ing modules, which completes one round of the major
improvement iteration, k, with network modularity
value, Qk. The same strategy starts again, retaining the
order of the modules, until no improvement of the
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modularity value is reported for two successive major
iterations.
Comparing the single-level MIQP model, OptMod, to

the reduced MIQP models as implemented here, the lat-
ter strategy involves fewer variables and constraints and

can be terminated efficiently even in cases of larger size
networks, as discussed in the Results and Discussion
section. To justify why an iterative reduced MIQP is
preferred over MINLPs, it should be mentioned that we
achieved improved solutions by solving a series of

Figure 1 Flowchart of the iMod algorithm for module detection. For details on the solution procedure above, please refer to the text.
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reduced MIQP models, while no improvements have
been observed when solving reduced MINLP models
iteratively.
To avoid releasing too many nodes so that the

reduced OptMod model is still difficult to solve, the
maximum number of released nodes for module m,
MAXm

r , is set to:

MAX
U

Averm
r

m

= (8)

where Averm denotes the average degree in module m
without considering the inter-module links and U is a
user-defined parameter. Here, we used a value of U =
200 which was shown to provide satisfactory results for
all examples studied. As a result, the actual number of
released nodes, N_R, will be the smaller value between
MAXm

r and the number of remaining nodes to be
released in REm (i.e. N R RE MAXm m

r_ min{ , }= ).
In other words, if the number of nodes in module m

is greater than MAXm
r , the first N_R nodes, Δ, in mod-

ule m will be released and the reduced MIQP solved. Im
is updated and REm becomes REm|Δ. If the updated REm
is still greater than MAXm

r , a further set of nodes of
size N_R is released, otherwise all remaining nodes are
released. The reduced MIQP is solved once again and
Im and REm updated accordingly. This is repeated until
all nodes in the module have been released at one point
and the procedure moves on to the next module. In
order to determine the set of N_R nodes to be released
in modules, we use a simple rule by first sorting nodes
with non-decreasing indices and then assigning higher
priority to nodes with smaller indices.
The above scheme is applied to all modules detected

during Stage 1, with the sequential order of the modules
maintained throughout the whole procedure. Future
research can investigate the effect of changing the
sequence of module reallocation, the appropriate selec-
tion of MAXm

r and node prioritisation. Figure 1 illus-
trates the entire module detection strategy, iMod,
encompassing Stages 1 and 2 of the mathematical pro-
gramming algorithm reported above.

Procedure to address resolution limitations
Although the modularity metric has been widely
accepted as a standard measure to quantify the commu-
nity composition in networks and detect modules, reso-
lution limit problems can hinder its application. Such
effects entail the failure of modularity optimisation to
detect modules smaller than a scale which depends on
the size of the network and the degree of inter-connect-
edness of the modules, as the algorithm tends to merge
small modules to achieve larger modularity values
[33,37,38]. Methodologies that aim to overcome

resolution limits can provide deeper insights into finer
structures of modules in complex networks and a more
accurate depiction of community structure on the basis
of the modularity measure.
In this section, we report a solution procedure

(ResMod) that allows smaller modules that may not be
detected in the initial modularity optimisation to
become apparent. First, the two-stage approach for
module detection, iMod, is applied to the whole network
to obtain a partition into several modules. In order to
determine if these modules comprise smaller modules,
each module is considered as a disjoint subnetwork,
ignoring links with other modules, and iMod is then
applied once to each subnetwork.
The partition of the subnetwork into smaller modules

is accepted as part of the community structure of the
original network if its modularity as a disconnected
entity (i.e. only considering the links involved in the
subnetwork) is greater than an enforced threshold. If
the partition of the subnetwork yields a value less than
this threshold, the new decomposition is not accepted
and the subnetwork remains intact as a community of
the original network.
Here, a threshold of value of 0.3 is adopted as a repre-

sentative community structure indicator, in accordance
to previous reports [25,26,33,34]. This criterion is imple-
mented to avoid over-partitioning that may hinder
method applicability. We should note here that this
implementation of a single and unvarying threshold to
determine whether partitioning is required may not be
enough to capture cases where random graphs (or parti-
tions obtained by chance) have a modularity higher than
0.3. Ideally, this criterion should be complemented with
an estimate of the statistical significance of the modular-
ity achieved (see [4,34]) to ensure that this value is
above a fluctuation margin. However, in practice, even
this coarse-grained approach to resolution limitation
problems seems to work well in proposing finer com-
munity structures for common complex networks and it
is a good first step into research for improving modular-
ity maximisation methods.

Results and Discussion
The application of iMod to detect modules and ResMod
to correct for potential resolution limitations is illu-
strated in this section through a number of real network
examples. All implementations were performed in
GAMS (General Algebraic Modeling System) [39] and
mathematical models (MINLP and MIQP) are solved
using SBB [40] and CPLEX [41] mixed integer optimisa-
tion solvers with computational limit of 3600 seconds,
where necessary. Each round of a module detection
experiment involves running iMod ten times and report-
ing the best and median modularity values (Table 1).
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ResMod is subsequently used on the partitioned net-
works to resolve resolution and identify finer modular
structures that may be present. A comprehensive com-
parison of our approach to other module detection
methodologies was performed and is discussed below to
illustrate significant improvements over previous
approaches.
A number of networks identified from the literature

serve as test cases to showcase the efficiency of the
computational methodology. Table 1 summarises all
networks considered, their sizes and indicative results of
the methodologies tested. Overall, nine examples were
used with varying sizes, in terms of total number of
nodes and links. These cases are inspired from social or
biological relationships and represent well-studied cases
in network analysis and related algorithm development.
Networks describing social interactions in our study

are (in ascending number of nodes): the Zachary net-
work of social relationships in an American university
club [42], the communications among dolphins con-
structed through a field study [43,44], relations among
roles in the novel Les Miserables [45], a network of jazz
musicians as described through their recordings [46]
and a university network of email communication [47].
Biological networks assessed are: the p53 protein inter-
action network [11], the transcriptional network of the
bacterium Escherichia coli [48], the transcriptional net-
work of the yeast Saccharomyces cerevisiae [49] and the
network of metabolic reactions of the nematode Caenor-
habditis elegans [50]. Figure 2 shows the network repre-
sentation of p53 protein interactions, with colours
indicating modules as detected by iMod.
Our methodologies for community detection and reso-

lution limitations are compared against the most widely
used approaches that employ modularity maximisation.
Here, a brief account of such previously developed algo-
rithms is given, together with reference to the original

publications for more details on the main properties of
each algorithm.
An algorithm based on edge-betweenness (EB) [25] that

involves the iterative removal of edges with the highest
betweenness score to split the network into communities
has been one of the very first attempts to use modularity
maximisation for module detection. The eigenvector
approach (EIG) was later proposed by the same group,
where network modularity was rewritten as eigenvectors
of a modularity matrix and lead to a spectral algorithm for
community detection [9]. Edge-betweenness has recently
been extended through the use of edge weights defined by
the edge-clustering coefficient (C3/C4) to improve module
detections [51]. Popular optimisation methodologies have
been proposed as efficient means to achieve modularity
maximisation, namely extremal optimisation (EO) [32]
and simulated annealing (SA) [33]. Recently, heuristic
algorithms have been proposed, i.e. one that relies on
spectral graph partitioning and local search (QCUT) [34]
and a greedy method for iterative grouping of nodes into
communities (Greedy) [52]. Both of these methods show
good performance compared to previous approaches. For
Greedy and QCUT, we used the relevant software to eval-
uate modules and estimate the resulting modularity. For
all other methods, the reported results are taken from the
relevant published papers.
Extensive comparisons of performance across all above

methodologies show that iMod achieved network parti-
tions with the highest modularity (Table 1). Consistently
better performance was noted for iMod throughout all
examples studied. It is important to mention that even
small improvements in modularity can differentiate
between good and exceptional methods, as has been
noted previously [9].
For the example of the p53 network (Figure 2), mod-

ules were mapped onto KEGG pathways and pathway
enrichment was calculated against the human genome

Table 1 Computational results comparing the performance of modularity optimisation methodologies across several
network examples

Networks iMod EB EIG C3/C4 EO SA QCUT Greedy

Name N L Median Q Best Q M Q

Zachary 34 78 0.420 0.420 4 0.401 0.419 0.417 0.419 0.420 0.419

Dolphin 62 159 0.529 0.529 5 0.520 0.518 0.519

Les Miserables 77 254 0.560 0.560 6 0.540 0.560 0.556

P53 104 226 0.535 0.535 7 0.522 0.531

Jazz 198 2742 0.445 0.445 4 0.405 0.442 0.441 0.445 0.445 0.443

E. coli 418 519 0.780 0.781 19 0.766 0.752 0.776 0.779

S. cerevisiae 688 1079 0.768 0.775 25 0.759 0.740 0.766 0.764

C. elegans 453 2025 0.451 0.453 9 0.403 0.435 0.422 0.434 0.433 0.441

Email 1133 5451 0.575 0.580 9 0.532 0.572 0.567 0.574 0.576 0.543

Best modularity achieved across all methodologies and network examples is denoted in bold.

References: EB [25], EIG [9], C3/C4 [51] EO [32], SA [33], QCUT [34], Greedy [52]
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through SubpathwayMiner [53]. We compared enriched
pathways for the iMod and Greedy partitions and, even
for small differences in community structures detected,
more pathways were significantly enriched in the iMod
partition. Even though clearly more work is need along
these lines, this is an early indication that module detec-
tion through iMod may be more meaningful biologically.
Comparative analyses are hindered to some extent by

missing values in Table 1, as different network examples
were assessed through each of the reported methodolo-
gies. For instance, the p53 example has been implemen-
ted in three methods (iMod, QCUT and Greedy), the
Dolphin and Les Miserables networks were considered
by four methodologies (iMod, EB, QCUT and Greedy),
the E. coli and S. cerevisiae by five (iMod, EIG, SA,
QCUT and Greedy) and the remaining four networks
have been tested by different combinations of seven
methodologies out of eight community detection algo-
rithms considered in total. Such missing values indicate
an impediment in related comparison efforts and it is
suggested that the definition of network examples as
standards, where algorithm development and evaluation
can be benchmarked, is needed in order to facilitate and
improve comparative analyses [54]. However, it should

also be noted that this is one of the most comprehensive
comparisons of module detection methodologies
employing modularity maximisation, to our knowledge.
Benchmarking was also extended to simulated net-

works to illustrate the efficiency of iMod. A large num-
ber of artificial networks with known community
structure was generated, as described previously [25].
These synthetic networks comprise 128 nodes and are
partitioned into four communities of 32 nodes with
degree equal to 16. In addition, we considered the case
where degree was set equal to 5, as this represented a
more realistic estimate of the average node degree in
real networks (see Table 1). The mixing parameter, μ,
i.e. the fraction of all links in a particular module that
end outside this module, was varied from 0.1 to 0.5.
Increasing the mixing parameter makes the modules of
the ‘true’ community structure less well defined and the
communities less easily detected. Testing for a mixing
parameter greater than 0.5 was not deemed necessary,
as it would contradict the definition of community
structure, where more intra-community links than inter-
community links should exist.
We tested how well iMod extracted this known struc-

ture and compared this to the Greedy algorithm [52],

Figure 2 Network representation of the p53 protein interactions. Modules, as detected through iMod, are indicated by colour.
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which was the next best performing method from the
comparison reported in Table 1. The mutual informa-
tion measure [55] was used to illustrate the agreement
between the known and detected community structures,
i.e. mutual information ranges from 0 (for dissimilar) to
1 for identical community structures. We generated 100
synthetic networks for each mixing parameter examined,
each of these was analysed with iMod and the Greedy
method, and the average mutual information was calcu-
lated. Figures 3a and 3b report the mutual information
plotted against the mixing parameter for the synthetic
networks to illustrate how close these methods were in
revealing the known community structure.
Overall, iMod performed better for all examples

tested. For node degree equal to 16, iMod and the
Greedy method manage to retrieve the exact partition
for all values of μ up to 0.35. Thereafter, iMod outper-
forms the Greedy method by continuing to extract the
exact partition whereas the Greedy method’s perfor-
mance declines rapidly. In the case of degree equal to 5,
iMod still achieves higher similarity to the known struc-
ture than the Greedy method for all values of μ.

Detection of resolution limitations
Improved community structures are not achieved solely
through maximisation of modularity; further refinement
by addressing resolution limits of modularity maximisa-
tion is critically important. Network modules obtained
with the iMod algorithm were further partitioned as
described in the ResMod procedure, ignoring all inter-
module links, as outlined above.

To illustrate how the proposed methodology can be
used to overcome resolution limitations, two synthetic
examples from the literature [33] are used, as they
represent particularly challenging cases in module detec-
tion. These network examples are shown in figures 4a
and 4b and summarised in Table 2. Both synthetic
examples are rather extreme cases in terms of their
topological properties and serve to verify the accurate
detection of community structure where resolution lim-
itations may pose significant problems. These are dis-
cussed in detail below.
The first example is a ring-shaped network composed

of 10 identical complete graphs of three nodes each,
represented by circles inter-connected by the minimal
number of links (Figure 4a). This graph is an example
of maximal modularity, since modularity converges to
one as the number of complete graphs reaches infinity
[33,56]. Modularity maximisation using iMod initially
suggests the existence of 5 modules, in accordance to
other approaches [33]. Through implementation of
ResMod to correct for resolution limits by optimising
each of the five communities further without consider-
ing the inter-module links, the two smaller groups
within each module become apparent and the total
number of modules is correctly identified as ten.
The second synthetic example comprises four groups

of nodes (y-shaped, Figure 4b). Each group, denoted by
a circle, consists of completely connected graphs: the
two leftmost groups comprise 20 nodes and the two on
the right consist of 5 nodes each [33]. Methods that per-
form modularity maximisation tend to merge the two

Figure 3 Benchmarking of module detection performance with iMod and the Greedy algorithm. Synthetic network examples (128 nodes,
4 modules) were generated with node degrees of 5 and 16 in (a) and (b) respectively. For each mixing parameter, μ, 100 networks were
assessed. The agreement of modules detected with the known community structure was expressed via the mutual information measure.
Consistently better performance was noted for iMod in all examples tested.
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smallest groups to yield the highest possible modularity
value at the cost of an inaccurate detection of underly-
ing community structure. Partitioning the network
through iMod and optimising each module through
ResMod yields the accurate number of four modules
and the network is partitioned correctly.
In real networks, improved module structures have

been detected for the dolphin, p53, E. coli and S. cerevi-
siae networks, while no improvement has been detected
for the remaining examples. Excluding the dolphin net-
work, where a marginal increase to the number of mod-
ules was observed after ResMod, all larger size networks
have shown a significant increment to the number of
modules proposed after the treatment for resolution. As
indicated in Table 3, the number of modules more than
doubled in the p53 and yeast networks and the same
quantity was four-fold higher in the E. coli and C.

elegans cases. Such wide differences clearly confirm that
accurate module detection is particularly challenging in
large networks where resolution problems are more
pronounced.
Another computational methodology that accounts for

resolution limitations is the use of simulated annealing
(SA) for modularity maximisation, where simulated
annealing is applied to each detected module to find out
whether any sub-modules can be identified [33]. In
comparison, the E. coli network was partitioned into 79
modules with a modularity of 0.675 with ResMod, com-
pared to 76 modules with modularity of 0.661 in SA.

Figure 4 Benchmarking of the procedure to address resolution limitations. (a) Ring-shaped network, each circle denotes identical complete
graphs (subgraphs of three nodes, K3). Subgraphs are connected with the minimum number of edges, as shown. Dotted lines indicate modules
detected through modularity maximisation without correcting for resolution (iMod). After accounting for resolution limitations (ResMod), each
complete graph is identified as a separate module, revealing the correct community structure of ten modules. (b) Y-shaped network comprising
of complete subgraphs with twenty and five nodes (K20, K5 respectively), linked as shown. Resolution limitations in modularity maximisation lead
to merging the two smallest subgraphs, thus yielding three modules. The ResMod algorithm can correctly identify all four modules present.

Table 2 Computational results for modularity
optimisation and resolution limits in simulated network
examples

Networks iMod ResMod

Name N L Median Q Best Q M Q_Reso M

Ring 30 40 0.6750 0.6750 5 0.6500 10

Y-shape 50 40 0.5426 0.5426 3 0.5416 4

Median and best modularity values (Q) are reported after module detection
with iMod (out of ten runs) and after accounting for resolution problems with
ResMod (Q_Reso).

Table 3 Computational results for module detection
without correction for resolution problems (iMod) and
after accounting for resolution (ResMod)

Network iMod ResMod

Name Q M Q M

Zachary 0.420 4 0.420 4

Dolphin 0.529 5 0.504 7

Les Miserables 0.560 6 0.560 6

P53 0.535 7 0.469 16

Jazz 0.445 4 0.445 4

E. coli 0.781 19 0.675 79

S. cerevisiae 0.775 25 0.693 66

C. elegans 0.453 9 0.366 44

Email 0.580 9 0.432 72
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For the yeast network, ResMod achieves 66 modules
with modularity of 0.693, as opposed to 57 modules
with a total community modularity of 0.677 in SA. In
both cases, ResMod succeeded in further dividing a
higher number of modules while still achieving parti-
tions with better overall modularity scores. Furthermore,
another possible advantage of the methodology pre-
sented here is an explicit account to avoid over-
partitioning, through implementation of the threshold
value. However, further work is planned in the future to
address: (i) quality control measures in module discov-
ery to assess whether the detected community structure
reflects phenotypic properties well, and (ii) further
development of measures to avoid over-partitioning
when accounting for resolution problems.

Conclusions
Community structure identification through modularity
maximisation is hindered by (i) the NP-hard properties
of the related optimisation problem and (ii) the resolu-
tion limitations introduced through the modularity mea-
sure. We have previously reported the detection of
community structure in small to medium networks
through a mixed integer quadratic programming proce-
dure that guarantees global optimal solutions for modu-
larity maximisation [30]. Here, we extend this work to
tackle large size networks through an iterative optimisa-
tion procedure that performs well as evidenced through
comparative analyses. As a further improvement, we
also report methodological details of identifying and
addressing resolution limitations, thus retrieving a more
accurate representation of community structure from
data.
Despite significant advances in the area of module

detection through modularity optimisation, it is impor-
tant to mention some caveats. First, modularity may not
be the most appropriate measure of topological network
features, as it can introduce limitations in practical
applications [33,57]. Alternative measures have been
proposed [36] and will be studied in future work in
terms of their ability to enhance module detection. It is
worth noting that solution procedures presented here
are generic and can be implemented with any mathema-
tical expression of community presence other than
modularity.
Furthermore, the use of coarse-grained topological

features as a means to represent a complex network
may not always be sufficient in delineating the intricate
relationships and phenotypic properties of the system at
hand. For example, in biological networks modularity is
a phenomenon linked to a varying contribution of evo-
lutionary inheritance of features, genome organisation
properties and functional attributes [8]. Enriched net-
work abstractions (e.g. edge weight and directionality),

development of more accurate fitness functions (for
example to capture cooperation effects [58]), as well as
methodologies incorporating dynamic features can all
contribute to future advances.
Network theory and related computational approaches

have significantly enhanced our ability to offer deep
insights into the principles governing complex systems.
Analysis of protein interactions has shed light into
mechanisms of disease [59-61], the association of genetic
to phenotypic properties [7,62] and biological species [2].
In this respect, the role of an accurate computational
procedure to reveal the relations between the structure
and functions in complex systems is important. Meth-
odologies that allow communities to be detected both
optimally and unambiguously, such as the ones presented
in this paper, can greatly assist in this direction.
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