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Abstract
Background: Discriminative models are designed to naturally address classification tasks.
However, some applications require the inclusion of grammar rules, and in these cases generative
models, such as Hidden Markov Models (HMMs) and Stochastic Grammars, are routinely applied.

Results: We introduce Grammatical-Restrained Hidden Conditional Random Fields (GRHCRFs)
as an extension of Hidden Conditional Random Fields (HCRFs). GRHCRFs while preserving the
discriminative character of HCRFs, can assign labels in agreement with the production rules of a
defined grammar. The main GRHCRF novelty is the possibility of including in HCRFs prior
knowledge of the problem by means of a defined grammar. Our current implementation allows
regular grammar rules. We test our GRHCRF on a typical biosequence labeling problem: the
prediction of the topology of Prokaryotic outer-membrane proteins.

Conclusion: We show that in a typical biosequence labeling problem the GRHCRF performs
better than CRF models of the same complexity, indicating that GRHCRFs can be useful tools for
biosequence analysis applications.

Availability: GRHCRF software is available under GPLv3 licence at the website

http://www.biocomp.unibo.it/~savojard/biocrf-0.9.tar.gz.

Background
Sequence labeling is a general task addressed in many dif-
ferent scientific fields, including Bioinformatics and Com-
putational Linguistics [1-3]. Recently Conditional
Random Fields (CRFs) have been introduced as a new
promising framework to solve sequence labeling prob-
lems [4]. CRFs offer several advantages over Hidden
Markov Models (HMMs), including the ability of relaxing
strong independence assumptions made in HMMs [4].
CRFs have been successfully applied in biosequence anal-
ysis and structural predictions [5-11]. However, several

problems of sequence analysis can be successfully
addressed only by designing a grammar in order to pro-
vide meaningful results. For instance in gene prediction
tasks exons must be linked in such a way that the donor
and acceptor junctions define regions whose length is
multiple of three (according to the genetic code), and in
protein structure prediction, helical segments shorter than
4 residues should be consider meaningless, being this the
shortest allowed length for a protein helical motif [1,2]. In
this kind of problems, the training sets generally consist of
pairs of observed and label sequences and very often the
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number of the different labels representing the experi-
mental evidence is small compared to the grammar
requirements and the length distribution of the segments
for the different labels. Then a direct mapping of one-label
to one state results in poor predictive performances and
HMMs trained for these applications routinely separate
labels from state names. The separation of state names
and labels allows to model a huge number of concurring
paths compatible with the grammar and with the experi-
mental labels without increasing the time and space com-
putational complexity [1].

In analogy with the HMM approach, in this paper we
develop a discriminative model that incorporates regular-
grammar production rules with the aim of integrating the
different capabilities of generative and discriminative
models. In order to model labels and states disjointly, the
regular grammar has to be included in the structure of a
Hidden Conditional Random Field (HCRF) [12-14]. Pre-
viously, McCallum et al. [13] introduced a special HCRF
that exploits a specific automaton to align sequences.

The model here introduced as Grammatical-Restrained
Hidden Conditional Random Field (GRHCRF), separates
the states from the labels and restricts the accepted predic-
tions only to those allowed by a predefined grammar. By
this, it is possible to cast into the model prior knowledge
of the problem at hand, that may not be captured directly
from the learning associations and ensures that only
meaningful solutions are provided.

In principle CRFs can directly model the same GRHCRF
grammar. However, given the fully-observable nature of
the CRFs [12], the observed sequences must be re-labelled
to obtain a bijection between states and labels. This
implies that only one specific and unique state path for
each observed sequence must be selected. On the contrary
with GRHCRFs that allow the separation between labels
and states, an arbitrary large number of different state
paths, corresponding to the same experimentally
observed labels, can be counted at the same time. In order
to fully exploit this path degeneration in the prediction
phase, the decoding algorithm must take into account all
possible paths, and the posterior-Viterbi (instead of the
Viterbi) should be adopted [15].

In this paper we define the model as an extension of a
HCRF, we provide the basic inference equations and we
introduce a new decoding algorithm for CRF models. We
then compare the new GRHCRF with CRFs of the same
complexity on a Bioinformatics task whose solution must
comply with a given grammar: the prediction of the topo-
logical models of Prokaryotic outer membrane proteins.
We show that in this task the GRHCRF performance is

higher than to those achieved by CRF and HMM models
of the same complexity.

Methods
In what follows x is the random variable over the data
sequences to be labeled, y is the random variable over the
corresponding label sequences and s is the random varia-
ble over the hidden states. We use an upper-script index
when we deal with multiple sequences. The problem that
we want to model is then described by the observed
sequences x(i), by the labels y(i) and by the underlying
grammar G that is specified by its production rules with
respect to the set of the hidden states. Although it is pos-
sible to imagine more complex models, in what follows
we restrict each state to have only one possible associated
label. Thus we define a function that maps each hidden
state to a given label as:

The difference between the CRF and GRHCRF (or HCRF)
models can be seen in Figure 1, where their graphical
structure is presented. GRHCRF and HCRF are indistin-
guishable from their graphical structure representation
since it depicts only the conditional dependence among
the random variables. Since the number of the states |{s}|
is always greater than the number of possible labels |{y}|
the GRHCRFs (HCRFs) have more expressive power than
the corresponding CRFs.

We further restrict our model to linear HCRF, so that the
computational complexity of the inference algorithms
remains linear with respect to the sequence length. This
choice implies that the embedded grammar will be regu-
lar. Our implementation and tests are based on first order
HCRFs with explicit transition functions (tk(sj-1, sj, x)) and
state functions (gk(sj, x)) unrolled over each sequence
position j.

However, for sake of clarity in the following we use the
compact notation:

where fk(sj-1, sj, x) can be either a transition feature func-
tion tl(sj-1, sj, x) or a state feature function gn(sj, x). Follow-
ing the usual notation [16] we extend the local functions
to include the hidden states as
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and we set the two constraints as:

With this choice, the local function ψj(s, y, x) becomes
zero when the labeling (Ω(sj, yj)) or the grammar produc-
tion rules (Γ(s, s')) are not allowed. In turn this sets to zero
the corresponding probabilities. As in the case of the
HCRF, for the whole sequence we define Ψ(s, y, x) =
Πjψj(s, y, x) and the normalization factors (or partition
functions) can be obtained summing over all possible
sequences of hidden states (or latent variables):

or summing over all possible sequences of labels and hid-
den states:

Using the normalization factors the joint probability of a
label sequence y and an hidden state sequence s given an
observation sequence x is:

The probability of an hidden state sequence given a label
sequence and an observation sequence is:

Finally, the probability of a label sequence given an obser-
vation sequence can be computed as follows:

Parameter estimation
The model parameters (θ) can be obtained by maximizing
the log-likelihood of the data:
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Graphical structure of a linear-CRF (left) and a linear GRHCRF/HCRF (right)Figure 1
Graphical structure of a linear-CRF (left) and a linear GRHCRF/HCRF (right).
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where the different sequences are supposed to be inde-
pendent and identically distributed random variables.

Taking the first derivative with respect to parameter λk of
the objective function we obtain:

where, in analogy with the Boltzmann machines and
HMMs for labelled sequences [17],  and  an be seen as
clamped and free phases. After simple computations we
can rewrite the derivative as:

where the Ep(s|y, x) [fk] and Ep(s, y|x) [fk] are the expected val-
ues of the feature function fk computed in the clamped
and free phases, respectively. Differently from the stand-
ard CRF, both expectations have to be computed using the
Forward and Backward algorithms. These algorithms
must take into consideration the grammar restraints.

To avoid overfitting, we regularize the objective function
using a Gaussian prior, so that the function to maximize
has the form of:

and the corresponding gradient is:

Alternatively, the Expectation Maximization procedure
can be adopted [16].

Computing the expectations
The partition functions and the expectations can be com-
puted using the dynamic programming by defining the so
called forward and backward algorithms [1,2,4]. For the
clamped phase the forward algorithm is:

where the clamped phase matrix MC takes into account

both the grammar constraint (Γ(s', s)) and the current

given labeling y .

The forward algorithm for the free phase is computed as:

where the free phase matrix MF is defined as:

It should be noted that also in the free phase the algo-
rithm has to take into account the grammar production
rules Γ(s', s) and only the paths that are in agreement with
the grammar are counted. Analogously, the backward
algorithms can be computed for the clamped phase as:

where L(i) is the length of the ith protein. For the free phase
we have:
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The expectations of the feature functions (Ep(s|y, x) [fk], Ep(s,

y|x) [fk]) are computed as:

The partition functions can be computed using both for-
ward or backward algorithms as:

where for simplicity we dropped out the sequence upper-
script ((i)).

Decoding
Decoding is the task of assigning labels (y) to an unknown
observation sequence x. Viterbi algorithm is routinely
applied as decoding for the CRFs, since it finds the most
probable path of an observation sequence given a CRF
model [4]. Viterbi algorithm is particular effective when
there is a single strong highly probable path, while when
several paths compete (have similar probabilities), poste-
rior decoding may perform significantly better. However,
the selected state path of the posterior decoding may not
be allowed by the grammar. A simple solution of this
problem is provided by the posterior-Viterbi decoding,
that was previously introduced for HMMs [15]. Posterior-
Viterbi, exploits the posterior probabilities and at the
same time preserves the grammatical constraint. This
algorithm consists of three steps:

• for each position j and state s ∈ , compute poste-
rior probability p(sj = s|x)

• find the allowed state path

S* = argmaxs Πj p(sj = s|x)

• assig to x a label sequence y so that yj = Λ(sj) for each
position j

The first step can be accomplished using the Forward-
Backward algorithm as described for the free phase of
parameter estimation. In order to find the best allowed
state path, a Viterbi search is performed over posterior
probabilities. In what follows ρj(s|x) is the most probable
allowed path of length j ending in state s and πj(s) is a
traceback pointer. The algorithm can be described as fol-
lows:

1. Initialization:

2. Recursion

3. Termination and Traceback

The labels are assigned to the observed sequence accord-
ing to the state path s*. It is also possible to consider a
slightly modified version of the algorithm where, for each
position, the posterior probability of the labels is consid-
ered, and the states with the same label have associated
the same posterior probability. The rationale behind this
is to consider the aggregate probability of all state paths
corresponding to the same sequence of labels to improve
the overall per label accuracy. In many applications this
variant of the algorithm might perform better.

Implementation
We implemented the GRHCRF as linear HCRF in C++ lan-
guage. Our GRHCRF can deal with sequences of symbols
as well as sequence profiles. A sequence profile of a protein
p is a matrix X whose rows represent the sequence posi-
tions and whose columns are the 20 possible amino acids.
Each element X [i] [a] of the sequence profile represents
the frequency of the residue type a in the aligned position
i. The profile positions are normalized such as ΣaX[i][a] =
1 (for each i).

In order to take into account the information of the neigh-
boring residues we define a symmetric sliding window of
length w centered into the i-th residue. With this choice
the state feature functions are defined as:
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where s runs over all possible states, a runs over the differ-
ent observed symbols A (in our case the 20 residues) and

k runs over the neighbor residues (from -  to ).

When dealing with single sequences, the state functions
are simply products of Kronecker's deltas:

while in the case of sequence profiles, the state features are
real-valued and assume the profile scores:

Measures of performance
To evaluate the accuracy we define the classical label-
based indices, such as:

where p and N are the total number of correct predictions
and total number of examples, respectively. The Matthews
correlation coefficient (C) for a given class s is defined as:

p(s) and n(s) are respectively the true positive and true
negative predictions for class s, while o(s) and u(s) are the
numbers of false positives and false negatives with respect
to that class. The sensitivity (coverage, Sn) for each class s
is defined as

The specificity (accuracy, Sp) is the probability of correct
predictions and it is defined as follows:

However, these measures cannot discriminate between
similar and dissimilar segment distributions and do not
provide any clues about the number of proteins that are
correctly predicted. For this reason we introduce a protein-
based index, the Protein OVerlap (POV) measure. We con-

sider a protein prediction to be correct only if the number
of predicted and observed transmembrane segments (in
the structurally resolved proteins, see Outer-membrane
protein data set section) is the same and if all correspond-
ing pairs have a minimum segment overlap. POV is a
binary measure (0 or 1) and for a given protein sequence
s is defined as:

Where  and  are the numbers of predicted and

observed segments, while pi and oi are the ith predicted and

observed segments, respectively. The threshold θ is
defined as the mean of the half lengths of the segments:

where Lp(= |pi|) and Lo(= |oi|) are the lengths of the pre-
dicted and observed segments, respectively. For a set of
proteins the average of all POVs over the total number of
proteins N is:

To evaluate the average standard deviation of our predic-
tions, we performed a bootstrapping procedure with 100
runs over 60% of the predicted data sets.

Results and Discussion
Problem definition
The prediction of the topology of the outer membrane
proteins in Prokaryote organisms is a challenging task that
was addressed several times given its biological relevance
[18-20]. The problem can be defined as: given a protein
sequence that is known to be inserted in the outer mem-
brane of a Prokaryotic cell, we want to predict the number
and the location with respect to the membrane plane of
the membrane-spanning segments. From experimental
results, we know that the outer membrane of Prokaryotes
imposes some constraints to the topological models such
as:

• both C and N termini of the protein chain lie in the
periplasmic side of the cell (inside) and this implies
that the number of the spanning segments is even;

• membrane spanning segments have a minimal seg-
ment length (≥ 3 residues);

• the transmembrane-segment lengths are distributed
accordingly to a probability density distribution that
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can be experimentally determined and must be taken
into account.

For the reasons listed above the best performing predic-
tors described in literature are based on HMMs and
among them the best performing single-method in the
task of the topology prediction is HMM-B2TMR [18] (see
Table 1 in [20]).

Outer-membrane protein data set
The training set consists of 38 high-resolution experimen-
tally determined outer-membrane proteins of Prokaryo-
tes, whose sequence identity between each pair is less than
40%. We then generated 19 subsets for the cross-valida-
tion experiments, such as there is no sequence identity
greater than 25% and no functional similarity between
two elements belonging to disjoint sets. The annotation
consists of three different labelings that correspond to:
inner loop (i), outer loop (o) and transmembrane (t). This
assignment was obtained using the DSSP program [21] by
selecting the β-strands that span the outer membrane. The
dataset with the annotations and the cross-validation sets
are available with the program at http://www.bio
comp.unibo.it/~savojard/biocrf-0.9.tar.gz.

For each protein in the dataset, a profile based on a mul-
tiple sequence alignment was created using the PSI-BLAST
program on the non-redundant dataset of sequences
(uniref90 as described in http://www.uniprot.org/help/
uniref). PSI-BLAST runs were performed using a fixed
number of cycles set to 3 and an e-value of 0.001.

Prediction of the topology of Prokaryotic outer membrane 
proteins
The topology of outer-membrane proteins in Prokaryotes
can be described assigning each residue to one of three

types: inner loop (i), transmembrane β-strand (t), outer
loop (o). These three types are defined according to the
experimental evidence and are the terminal symbols of the
grammar. The chemico-physical and geometrical charac-
teristics of the three types of segments as deduced by the
available structures in the PDB suggest how to build a
grammar (or the corresponding automaton) for the pre-
diction of the topology. We performed our experiments
using the automaton depicted in Figure 2, which was pre-
viously introduced to model our HMM-B2TMR [18] (this
automaton is substantially similar to all other HMMs used
for this task [19,20]). It is essentially based on three differ-
ent types of states. The states of the automaton are the non-
terminal symbols of the regular grammar and the arrows
represent the allowed transitions (or production rules).
The states represented with squares describe the trans-
membrane strands while the states shown with circles rep-
resent the loops (Figure 2). A statistics on the non-
redundant database of outer membrane proteins pres-
ently available, indicates that the length of the strands of
the training set ranges from 3 to 22 residues (with an aver-
age length of 12 residues). In Prokaryotic outer membrane
proteins the inner loops are generally shorter than outer
loops. Furthermore, both the N-terminus and C-terminus
of all the proteins lie in the inner side of the membrane
[18]. These constraints are modelled by means of the
allowed transitions between the states.

The automaton described in Figure 2 assigns labels to
observed sequences that can be obtained using different
state paths. This ambiguity leads to an ensemble of paths
that must be taken into account during the likelihood
maximization by summing up all possible trajectories
compliant with the experimentally assigned labels (see
Method section).

Table 1: Prediction of the topology of the Prokaryotic outer membrane proteins.

Method POV Q2 C(t) Sn(t) Sp(t)

CRF-1 (Vit) 0.26 ± 0.05 0.72 ± 0.01 0.47 ± 0.02 0.59 ± 0.01 0.80 ± 0.01
CRF-1 (Pvit) 0.39 ± 0.05 0.77 ± 0.01 0.54 ± 0.02 0.71 ± 0.01 0.80 ± 0.01

CRF-2 (Vit) 0.34 ± 0.05 0.76 ± 0.01 0.52 ± 0.03 0.63 ± 0.02 0.82 ± 0.02
CRF-2 (Pvit) 0.47 ± 0.05 0.80 ± 0.01 0.60 ± 0.03 0.74 ± 0.02 0.82 ± 0.02

CRF-3 (Vit) 0.29 ± 0.04 0.72 ± 0.01 0.45 ± 0.02 0.60 ± 0.02 0.79 ± 0.01
CRF-3 (Pvit) 0.45 ± 0.04 0.76 ± 0.01 0.52 ± 0.02 0.70 ± 0.02 0.79 ± 0.01

GRHCRF 0.66 ± 0.04 0.85 ± 0.01 0.70 ± 0.03 0.83 ± 0.01 0.84 ± 0.01

HMM-B2TMR 0.58 ± 0.04 0.80 ± 0.01 0.62 ± 0.02 0.82 ± 0.02 0.83 ± 0.01

C(t), Sn(t) and Sp(t) are reported for the transmembrane segments (t).
Vit = Viterbi decoding, Pvit = posterior-Viterbi decoding.
For GRHCRF and HMM-B2TMR we used the posterior-Viterbi decoding.
Models are detailed in the text. Scoring indices are described in Measure of Accuracy section.
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However, this ambiguity does not permit the adoption of
the automaton of Figure 2 for CRF learning, since to train
CRFs a bijective mapping between states and labels is
required. On the contrary, with the automaton of Figure
2, several different state paths can be obtained (in theory
a factorial number) that are in agreement with the autom-
aton and with the experimental labels.

For this reason and for sake of comparison, we designed
three other automata (Figure 3a, b and 3c) that have the
same number of states but are non-ambiguous in term of
state mapping. Then, starting from the experimentally
derived labels, three different sets of re-labelled sequences
can be derived to train CRFs (here referred as CRF1, CRF2
and CRF3).

All compared methods take as input sequence profile and
are bench-marked as shown in Table 1. In the case of non-
ambiguous automata of the CRFs, we tested both the
Viterbi and posterior-Viterbi algorithms since given the
Viterbi-like learning of the CRFs it is not a priori predictable
which one of the two decodings performs better on this
particular task. From Table 1 it is clear that assigning the
labels according to the posterior-Viterbi always leads to
better performance than with the Viterbi (see CRF in Table
1). This indicates that also in other tasks where CRFs are
applied, the posterior-Viterbi here described can increase
the overall decoding accuracy. Furthermore, the fact that
both HMM-B2TMR and GRHCRF perform better than the
others, implies that in the tasks where the observed labels
may hide a more complex structure, as in the case of the
prediction of the Prokaryotic outer membrane proteins, it
is advantageous exploiting the ambiguity by taking into

consideration multiple concurring paths at the same time,
both during training and decoding (see Method section).
Considering that underlying grammar is the same, the dis-
criminative GRHCRF outperforms the generative model
(HMM-B2TMR). This indicates that the GRHCRF can sub-
stitute the HMM-based models when the labeling predic-
tion is the major issue. In order to asses the confidence
level of our results, we computed pairwise t-tests between
the GRHCRF and the other methods. From the t-test
results reported in Table 2, it is evident that the measures
of the performace shown in Table 1 can be considered sig-
nificant with a confidence level greater than 80% (see the
most relevant index POV).

Conclusion
In this paper we presented a new class of conditional ran-
dom fields that assigns labels in agreement with produc-
tion rules of a defined regular grammar. The main novelty
of GRHCRF is then the introduction of an explicit regular
grammar that defines the prior knowledge of the problem
at hand, eliminating the need of relabelling the observed
sequences. The GRHCRF predictions satisfy the grammar
production rules by construction, so that only meaningful
solutions are provided. In [13], an automaton was
included to restrain the solution of a HCRFs. However in
that case, it was hard-coded in the model in order to train
finite-state string edit distance. On the contrary, GRHCRFs
are designed to provide solutions in agreement with
defined regular grammars that are provided as further
input to the model. To the best of our knowledge, this is
the first time that this is described. In principle, the gram-
mar may be very complex, however, to maintain the trac-
tability of the inference algorithm, we restrict our

Automaton structure designed for the prediction of the topology of the outer-membrane proteins in Prokaryotes with GRH-CRFs and HMMsFigure 2
Automaton structure designed for the prediction of the topology of the outer-membrane proteins in Prokary-
otes with GRHCRFs and HMMs.

Inner Side (i) Outer side (o)Transmembrane (t)

End

Begin
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Three different non-ambigous automata derived from the one depicted in Figure 2Figure 3
Three different non-ambigous automata derived from the one depicted in Figure 2. These automata are designed 
to have a bijective mapping between the states and the labels (after the corresponding re-labeling of the sequences). In the text 
they are referred as CRF1 (a), CRF2 (b) and CRF3 (c).
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implementation to regular grammars. Extensions to con-
text-free grammars can be designed by modifying the
inference algorithms at the expense of the computational
complexity of the final models. Since the Grammatical-
Restrained HCRF can be seen as an extension of linear
HCRF [13,14], the GRHCRF is also related to the models
that deal with latent variables such as Dynamic CRFs [22].

In this paper we also test the GRHCRFs on a real biologi-
cal problem that require grammatical constraints: the pre-
diction of the topology of Prokaryotic outer-membrane
proteins. When applied to this biosequence analysis prob-
lem we show that GRHCRFs perform similarly or better
than the corresponding CRFs and HMMs indicating that
GRHCRFs can be profitably applied when a discrimina-
tive problem requires grammatical constraints.

Finally we also present the posterior-Viterbi decoding
algorithm for CRFs that was previously designed for
HMMs and that can be of general interest and application,
since in many cases posterior-Viterbi can perform signifi-
cantly better than the classical Viterbi algorithm.
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Table 2: Confidence level of the results reported in Table 1.

Methods POV Q2 C(t) Sn(t) Sp(t)

GRHCRF vs CRF-1 98.0% 99.5% 99.5% 99.8% 99.5%
GRHCRF vs CRF-2 96.0% 99.5% 99.5% 99.5% 99.5%
GRHCRF vs CRF-3 96.0% 99.5% 99.5% 99.5% 99.5%
GRHCRF vs HMM-B2TMR 80.0% 96.0% 99.0% 98.0% 99.5%

The confidence level on the significance of the differences was 
computed with a t-test.
For all methods we consider the best results of Table 1.
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