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Abstract
Understanding the protein folding mechanism remains a grand challenge in structural biology. In the
past several years, computational theories in molecular dynamics have been employed to shed light
on the folding process. Coupled with high computing power and large scale storage, researchers
now can computationally simulate the protein folding process in atomistic details at femtosecond
temporal resolution. Such simulation often produces a large number of folding trajectories, each
consisting of a series of 3D conformations of the protein under study. As a result, effectively
managing and analyzing such trajectories is becoming increasingly important.

In this article, we present a spatio-temporal mining approach to analyze protein folding trajectories.
It exploits the simplicity of contact maps, while also integrating 3D structural information in the
analysis. It characterizes the dynamic folding process by first identifying spatio-temporal association
patterns in contact maps, then studying how such patterns evolve along a folding trajectory. We
demonstrate that such patterns can be leveraged to summarize folding trajectories, and to facilitate
the detection and ordering of important folding events along a folding path. We also show that such
patterns can be used to identify a consensus partial folding pathway across multiple folding
trajectories. Furthermore, we argue that such patterns can capture both local and global structural
topology in a 3D protein conformation, thereby facilitating effective structural comparison amongst
conformations.

We apply this approach to analyze the folding trajectories of two small synthetic proteins-BBA5
and GSGS (or Beta3S). We show that this approach is promising towards addressing the above
issues, namely, folding trajectory summarization, folding events detection and ordering, and
consensus partial folding pathway identification across trajectories.

1 Background
The three dimensional (3D) native structures of proteins
have important implications in proteomics. Understand-
ing such structures enables us to explore the function of a
protein, explain substrate and ligand binding, perform
realistic drug design and potentially cure diseases caused

by protein misfolding. The protein folding problem is
therefore one of the most fundamental yet unsolved prob-
lems in computational molecular biology. One major
challenge in simulating the protein folding process is its
complexity. Snow et al. state that performing a Molecular
Dynamics (MD) simulation on a mini-protein for just 10
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µs would require decades of computation time on a typi-
cal CPU [1]. Researchers in the Folding@home project
recently proposed a World Wide Web-based computing
model to simulate the protein folding process [2].

As the volume of folding trajectories produced from high-
throughput simulation tools increases drastically, there is
an urgent need to compare, analyze, and manage such
data. Previously, researchers have examined several sum-
mary statistics (e.g. radius of gyration, root mean square
deviation (RMSD)) to identify similar 3D conformations
in folding trajectories. Although summary statistics are
commonly used for comparison, they can only capture
biased and limited global properties of the conformation.
Recently, Russel et al. [3] suggested using geometric span-
ners for mapping a simulation to a more discrete combi-
natorial representation. They apply geometric spanners to
discover the proximity between different segments of a
protein across a range of scales, and track the changes of
such proximity over time.

To overcome the difficulties in managing and analyzing
the large amount of protein folding simulation data, Ber-
rar et al. [4] proposed using a data warehouse system. They
embed the warehouse in a grid computing environment
to enable data sharing. They also propose implementing a
set of data mining algorithms to facilitate commonly
needed data analysis tasks.

In this article, we propose a spatio-temporal mining
approach to analyze folding trajectories. We extend the
spatio-temporal data mining framework that we have
developed earlier to analyze and manage such data [5].
This framework is designed to analyze spatio-temporal
data produced in several scientific domains. Previously,
we have applied this framework to analyze 8732 proteins
taken from the Protein Data Bank to identify structural
fingerprints for different protein classes (e.g., α-proteins)
[6]. Each protein is associated with a set of objects that are
extracted from its contact map. We then realize the notion
of Spatial Object Association Pattern (SOAP) to effectively
capture spatial relationships among such objects, Further-
more, by associating SOAPs with proteins in different pro-
tein classes, we have identified multiple types of SOAPs
that can potentially function as the structural fingerprints
for different protein classes. In this article, we extend such
strategies to a new application domain: analyzing and
characterizing the folding process of a protein.

Clearly, protein folding trajectories consist of both spatial
and temporal components. Each protein in a MD simula-
tion is composed of a number of residues spatially located
in the 3D space that move over time. Each frame (or snap-
shot) of the trajectory can be represented as a 2D contact
map, which captures the pair-wise 3D distances between

residues. We extract non-local bit-patterns from these con-
tact maps. We then use an entropy-based clustering algo-
rithm to cluster such bit-patterns into groups. These bit-
patterns are further associated to form spatial object asso-
ciation patterns (SOAPs). By using SOAPs, we are able to
effectively summarize and analyze folding trajectories
produced by MD simulations. A major advantage of this
representation is its appropriateness for cross-comparison
across different simulations, as discussed in later sections.

Compared to our previous work on protein structural
analysis [6,7], we have made the following contributions:

• Propose a contact map-based approach to analyze protein
folding trajectories: Our previous work focused on identify-
ing structural signatures in native conformation of pro-
teins in different classes or folds. Thus, there is no
temporal component involved. In contrast, a folding tra-
jectory has both spatial and temporal components. In
addition, bit-patterns in a folding trajectory will interact
with each other and evolve over time. Moreover, the pro-
posed approach also effectively integrates 3D structural
information in the overall analysis. This is critical in
understanding the protein folding mechanism.

• Map 2D bit-patterns in contact maps with 3D structural
motifs: To better understand and explain the biological
meaning of the bit-patterns in contact maps, we have
made an effort to establish a mapping between such bit-
patterns and well-known structural motifs (e.g., α-helices
and β-turns) in 3D conformations. Currently, this task is
carried out manually. We are in the process of automating
this mapping. Such a 2D-3D mapping is essential to fold-
ing data analysis due to the following reasons: First, to
gain insight into the folding process, it is critical to iden-
tify the formation of important local 3D motifs such as β-
turns. Second, our previous studies show that by associat-
ing multiple bit-patterns in contact maps, one can con-
struct effective structural signatures for different protein
classes or folds [6]. This leads us to hypothesize that a
mapping might exist between 2D bit-patterns in contact
maps and 3D local motifs of a protein. In this work, we
validate this hypothesis and report the mapping result
later. Finally, such a mapping not only enables one to take
advantage of the simplicity of working in the 2D space of
contact maps, but also allows one to relate to the 3D space
of protein conformations. This is important in under-
standing the protein folding process.

• Indirectly capture interactions among structural motifs in 3D
space: In our previous work, two bit-patterns are consid-
ered spatially proximate if they are located in the same
vicinity within a 2D contact map. This is problematic in
the context of protein folding, as two bit-patterns can be
spatially proximate in a contact map even though their
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corresponding motifs are distant in the 3D conformation.
(See Section 3 for more details.) We address this issue by
considering the 3D distance between two bit-patterns.

• Propose novel strategies to analyze protein folding trajectories:
We propose several novel strategies to analyze protein
folding trajectories based on spatial and spatio-temporal
association patterns.

In summary, one can benefit from our mining approach
in two main aspects:

• Effective, informative and scalable representation of
folding simulations: We represent each frame by a set of
SOAPs, where each SOAP in turn characterizes the spatial
relationship (or interactions in the folding case) among
multiple bit-patterns. SOAPs are not only easily obtaina-
ble but also, as we will show, able to capture folding
events along a folding trajectory.

• Cross-analysis of trajectories to reveal a consensus
partial folding pathway: By representing each frame as a
set of SOAPs, one can carry out analysis across different
trajectories. Such analysis includes detecting critical
events and identifying consensus partial folding pathways
across trajectories.

The remainder of the article is organized as follows. In
Section 2, we describe the two proteins-BBA5 and GSGS-
and their trajectories produced from computational simu-
lation. We also identify two main goals to analyze such
trajectories. In Section 3, we present a step-by-step
description of our analysis approach. We next report the
empirical results on analyzing the trajectories of the two
proteins in Section 4. We focus on the protein BBA5.
Finally we conclude and report several ongoing research
directions in Section 5.

2 Analyzing Protein Folding Trajectories
2.1 Protein Folding Trajectories
Advances in high-performance computing technologies
and molecular dynamics have led to successful simula-
tions of folding dynamics for (small) proteins at the ato-
mistic level [8]. Such simulations result in a large number
of folding trajectories, each of which consists of a series of
3D conformations of the protein under simulation. These
conformations are usually sampled regularly (e.g., every
200fs) during a simulation. In this article, we also refer to
each conformation as a folding frame or simply a frame.
Furthermore, to represent a protein conformation, we
adopt one of the commonly adopted representation
schemes, where a conformation is represented as a
sequence of α-carbons (Cα) located in 3D space.

In this article, we focus on the folding trajectories of two
mini proteins: BBA5 (Protein Data Bank ID) [9] and GSGS
(orBeta3s) [10,11]. Such trajectories were produced by the
Folding@ home research group at Stanford University
[12].

BBA5 is a 23-residue protein that folds at microsecond
timescale. The native structure (or fold) of BBA5 shows a
β-hairpin involving residues 1–10 and centering about
residues 4–5. It also includes an α-helix involving the
remaining residues 11–23. By convention, residues are
numbered increasingly from the N-terminal to C-terminal
of a protein. Figure 1(a) illustrates the native conforma-
tion of BBA5. The two folding trajectories, referred to as
T23 and T24 respectively, are of different length. T23 consists
of a series of 192 conformations (or frames), while T24 has
150 frames. Each conformation is described at atomistic
level in PDB format adopted by the Protein Data Bank
programs. GSGS (or Beta3s) is a 20-residue peptide with
an average folding rate of microseconds. Its NMR confor-
mation shows a three-stranded anti-parallel β-sheet with
turns at residues 6 – 7 and 14 – 15. Figure 2(a) depicts this

Different conformations of the small protein BBA5, where only the Cα atoms are shownFigure 1
Different conformations of the small protein BBA5, where only the Cα atoms are shown. (a)The native NMR 
structure of BBA5 based on data from the SCOP website. (b)The initial conformation of both folding trajectories. (c)The last 
conformation in the first trajectory. (d)The last conformation in the second trajectory.
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native conformation. There are a total of 5 GSGS folding
trajectories: T1, T2, T3, T4, and T5. The number of confor-
mations in each trajectory is listed in Table 1. Similar to
BBA5, each conformation corresponds to one PDB file.
Pande et al. explained in detail on the simulation model
and methods employed to produce such trajectories [8,9].

2.2 Comparing Conformations of BBA5 and GSGS Across 
Trajectories
Although both trajectories of BBA5 start from the same
extended conformation as shown in Figure 1(b), when we
examine the visualized frames, they seem to identify two
very different folding processes. Figures 1(c) and 1(d)
illustrate the last frame in the two trajectories T23 and T24
respectively. This also applies to the five GSGS folding tra-
jectories, where each starts with the same conformation
(Figure 2(b)) but ends at a different conformation (Fig-
ures 2(c), 2(d) &2(e)).

This seeming difference might be attributed to the sto-
chastic nature of the folding simulation process [8,9].
However, it is also desirable to characterize the similarities
(or dissimilarities) across multiple trajectories.

To compare two trajectories, one must address the follow-
ing key issue: how can we compare two protein conforma-
tions? Several measures have been commonly used
towards such a purpose, including RMSD (root mean
squared distance) [13], contact order [14], and native con-
tacts [15]. However, all these measures are designed to
quantify the global topology of a conformation. Further-
more, based on our empirical analysis of these measures,
we notice that they are generally too coarse and thus can
often be misleading. Even more importantly, such meas-
ures fail to identify similar local structures (or motifs)
between conformations. This is especially crucial for small
proteins like BBA5. As demonstrated in both experimental
and theoretical studies, small proteins often fold hierar-
chically and begin locally [16]. For instance, it has been
shown that BBA5 tends to first form secondary structures

such as β-turns and α-helices, then conform to its global
topology [9]. Finally, as suggested by Pande [8], both ster-
ics (local motifs) and global topology might play an
important role in protein folding. Therefore, to compare
conformations of (small) proteins, a more reasonable
comparison should consider both local and global struc-
tures. Moreover, it should also take the native topology of
the protein under study into account.

To meet these requirements, we propose the following
two-step approach to compare conformations of BBA5.
First, we partition the 23 residues of BBA5 into four frag-
ments: (i) F1: N-terminal 1–10 β-hairpin; (ii) F2: C-termi-
nal 11 – 23 α-helix fragment; (iii) F3: the first half of F1
and the second half of F2; and (iv) F4: the second half of
F1 and the first half of F2, i.e., the middle section in the pri-
mary sequence. This segmentation of is also summarized
in Table 2. Second, we recognize the secondary structure
propensity in each fragment. Two conformations are said
to be similar if they demonstrate the same secondary
structure propensity in the same fragment. For instance,
the pair of conformations in Figure 3(a) are similar as res-
idues in F1, F2 and F4 from both conformations indicate a
β-turn like local motif. Please note that the orientation of
local motifs does not affect the comparison. For instance,
in Figure 3(d), we say the two conformations have a sim-
ilar structure in F1 fragment, even though the β-turn
motifs have different orientations.

The same two-step approach is also applied to find similar
GSGS conformations, except that a different segmentation
strategy is adopted according to the native GSGS structure.
A total of seven segments are being used to identify the rel-
ative location of a motif in GSGS. Table 3 lists such seg-
ments. Also listed are the residues involved in each
segment and its biological meaning.

To realize the comparison of conformations, two more
issues must still be addressed. First, how can one effec-
tively capture and represent local motifs? Second, how can

Different conformations of the GSGS peptide, where only the Cα atoms are shownFigure 2
Different conformations of the GSGS peptide, where only the Cα atoms are shown. (a)The native NMR conforma-
tion of GSGS. (b)The initial conformation in all the five folding trajectories. (c)The last conformation in the 1st trajectory. 
(d)The last conformation in the 3rd trajectory. (e)The last conformation in the 5th trajectory.
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we represent the global topology of a conformation in
terms of local motifs? To address the first issue, we lever-
age the non-local patterns in protein contact maps. For the
second, we characterize the spatial arrangement among
non-local patterns. Please see Section 3 for more details.

2.3 Folding Trajectory Analysis: Objectives
There are two main goals we would like to achieve in ana-
lyzing the folding trajectories. First, we would like to
address the following issues for individual trajectories: (1)
to detect (or predict) significant folding events, including
the formation of β-turns, α-helices, and native-like con-
formations; and (2) to recognize the temporal ordering of
important folding events in the trajectory. For instance,
between the two secondary structures α-helix and β-hair-
pin in BBA5, which forms earlier? What is ordering of the

two events preceding a β-hairpin formation: formation of
two extended strands or formation of the turn?

In contrast to the first goal, our second goal concerns mul-
tiple trajectories. Specifically, we would like to identify a
sub-sequence of similar conformations across trajectories.
This sub-sequence of conformations is referred to as the
consensus partial folding pathway. This is analogous to the
Longest Common Sub-sequence (LCS) problem [17], but
much more challenging due to the following reasons.
First, we are dealing with time series of 3D protein struc-
tures. Second, we are looking for similar conformations
across trajectories, and our work on mining spatio-tempo-
ral data [5].

3 Algorithm
In this section, we describe in detail the proposed
approach for analyzing protein folding trajectories. As

Selected conformation-pairs along the consensus partial folding pathway of BBA5Figure 3
Selected conformation-pairs along the consensus partial folding pathway of BBA5. The figure illustrates four con-
formation-pairs, one from each trajectory, along the consensus partial folding pathway identified in the two BBA5 trajectories.
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Table 1: A brief description of the GSGS folding trajectories.

Trajectory ID Total number of conformations

T1 25,664
T2 30,075
T3 19,649
T4 25,263
T5 25,664

Table 2: Partitions along the primary sequence of BBA5.

Partition Amino Acids Remark

F1 1–10 β-hairpin
F2 11–23 α-helix
F3 1–6, 16–23 The 1st half of F1 and the 2nd half of F2
F4 6–17 The 2nd half of F1 and the 1st half of F2
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shown in Figure 4, such an approach consists of three
main phases: (I) Data preprocessing, (II) Spatio-temporal
object association pattern mining, and (III) Trajectory
analysis. We next discuss each phase in further details.

3.1 Data Preprocessing
Same as in our previous studies on protein structural anal-
ysis [6,7], we represent 3D protein conformations by con-
tact maps. In order for this algorithm to be self-contained,
we next briefly go over these preprocessing steps. We also
explain the rationale of such steps in the context of pro-
tein folding.

Contact Map Generation
When generating contact maps, we consider the Euclidean
distances between α-carbons (Cα) of each amino acid.
Two α-carbons are considered to be in contact if their dis-
tance is within 8.5 Å. Thus, for a protein of N residues, its
contact map is an N × N binary matrix, where the cell at (i,
j) is 1 if the ith and jth α-carbons are in contact, 0 otherwise.
Since contact maps are symmetric across the diagonal, we
only consider the bits below the diagonal. Furthermore,
we also ignore the pairs of Cα atoms whose distance in the
primary sequence is ≤ 2, as they are sure to be in contact.
This step transforms the two BBA5 trajectories into two

series of contact maps, with each contact map of size 23 ×
23. By the same token, the 5 GSGS trajectories are trans-
formed into 5 sequences of contact maps.

Identifying Maximally Connected Bit-patterns
Every bit in a contact map has eight neighbor bits. For an
edge position, we assume its out-of-boundary positions
contain 0. In a contact map, a connected bit-pattern is a
collection of bit-1 positions, where for each 1, at least one
of its neighbors is 1. Correspondingly, we define a maxi-
mally-connected bit-pattern (also referred to as a bit-pattern
in this article) to be a connected pattern p where every
neighbor bit not in p is 0. We apply a simple region
growth algorithm to identify all the maximally-connected
patterns in each contact map within the two series of con-
tact maps, corresponding to the two folding trajectories of
BBA5. Altogether, we identified 352 maximally-connected
bit-patterns in such contact maps. For the GSGS folding
data, a total of 50,572 unique bit-patterns are constructed.
We then represent each identified bit-pattern as a 6-tuple
feature vector consisting of the following attributes:

• Height: the number of rows contained in the pattern's
Minimum Bounding Rectangle (MBR).

• Width: the number of columns in the pattern's MBR.

• NumOnes: the number of 1s in the pattern.

• Slope: the general linear distribution trend of all the 1s in
the pattern within its MBR. To compute the angle of a con-
nected pattern we use the least-squares method to esti-
mate the slope of a linear regression line. For a pattern
containing n 1s, we denote the positions of the 1s as: (x1,

y1)...(xn, yn). The least-squares method then estimates the

AlgorithmFigure 4
Algorithm. Main steps of summarizing and analyzing protein folding trajectories.

I: Data preprocessing
1.1 Generate contact maps for every conformation in the two folding trajectories
1.2 Identify maximally connected bit-patterns in all contact maps
1.3 Cluster bit-patterns into approximately equivalent groups based on geometric properties
1.4 Re-label each bit-pattern with its corresponding cluster label

II: Discovering frequent spatio-temporal object association patterns (SOAPs)
2.1 Discover frequent (minLink=1)-SOAPs of bit-patterns in either folding trajectory

III: Folding trajectory analysis
3.1 Summarize each folding trajectory based on frequent SOAPs
3.2 Detect folding events and recognize the ordering of folding events in a trajectory
3.3 Identify the consensus partial folding pathway across trajectories

Table 3: Partitions along the primary sequence of GSGS.

Partition ID Amino Acids Remark

F1 1–15 The 1st β-turn
F2 1–7 The 1st β-strand
F3 3–10 Critical region of the 1st β-turn
F4 6–15 The 2nd β-strand
F5 6–20 The 2nd β-turn
F6 10–18 Critical region of the 2nd β-turn
F7 14–20 The 3rd β-strand
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slope β1 as:

• xStdDev: the standard deviation of all the 1s' x-coordi-
nates (this quantifies how the 1s spread along the x
dimension).

• yStdDev: the standard deviation of all the 1s' y-coordi-
nates.

Note that this feature vector captures the main geometric
properties of a bit-pattern.

As discussed in the literature [18-21], non-local patterns
(where bit-patterns are one type of non-local patterns,) in
contact maps can effectively capture the secondary struc-
ture of proteins. Our previous work [6,7] demonstrated
that by characterizing the spatial relationship among the
above described bit-patterns, one can construct structural
signatures for proteins of different classes or folds. In the
context of protein folding, we have observed that the
above-defined bit-patterns are also capable of capturing a
wide range of local 3D structural motifs. They can even
approximately measure the strength of secondary struc-
ture propensity in a conformation. For instance, we have
identified bit-patterns that correspond to "premature" α-
helices and native-like α-helices respectively. Henceforth,
we refer to the 3D structure formed by all the participating
residues of a bit-pattern as the 3D motif of the bit-pattern.
The relationship between bit-patterns and 3D motifs will
be further discussed in the next section.

Clustering Bit-patterns into Approximately Equivalent Groups
In this step, we partition the extracted bit-patterns into
approximately equivalent groups, each of which consists of
bit-patterns that exhibit similar geometric properties (e.g.,
shape and size). To construct such equivalent groups, we
run the k-means based clustering algorithm [22] over the
bit-patterns' corresponding feature vectors, where k is the
number of clusters (or equivalent groups) that will be pro-
duced.

To determine an optimal value of k, we take the following
three steps. First, we run the clustering algorithm on dif-
ferent k values. This produces different clustering schemes
for the same set of bit-patterns. Second, for each clustering
scheme, we compute its entropy. Let c1, ..., cl be the l clus-

ters after clustering the set of N bit-patterns. Furthermore,

each cluster ci (1 ≤ i ≤ l) has an individual entropy Hi and

contains Ni elements, then the total entropy of this clus-

tering is given by the following formula:

 The entropy of each individual

cluster, i.e., Hi , is computed by summing up the entropy

of each of the six bit-pattern attributes such as its height
and width. For an attribute, we compute its entropy in a
cluster according to the procedure explained by Shannon
[23]. In the third and final step, we plot the entropy
against the number of clusters, i.e., k, and choose a value
k where the entropy plot begins to show a linear trend. For
the BBA5 folding data, this clustering step groups the 352
bit-patterns into 10 clusters (or types). As for the GSGS
data, 12 clusters are identified.

Intuitively, the 3D motifs of the bit-patterns in a cluster
will also have similar 3D geometric properties. This is ver-
ified based on our manual analysis on the BBA5 trajecto-
ries. Figure 5 illustrates the representative 3D
motifs.corresponding to the 9 of 10 types of bit-patterns
identified in BBA5 trajectories. We omit type 0, as bit-pat-
terns of this type, unlike the others, correspond to a wide
variety of 3D motifs.

We also observed a similar scenario for the 12 types of bit-
patterns identified in the GSGS trajectories. For instance,
the typical 3D motifs of type 0 bit-patterns resemble the
native conformation of GSGS (See Figure 2(a)); whereas
those of type 6 identify with α-helices.

Upon a closer look at this 2D-3D mapping illustrated in
Figure 5, one can observe the following interesting
aspects. First, multiple types of bit-patterns can be associ-
ated with a single type of 3D motif. For instance, there are
3 types of bit-patterns are mapped to an α-helical motif.
Second, contrary to a commonly accepted belief that β-
turns or β-sheets cannot be captured by maximally con-
nected bit-patterns as defined earlier, our analysis shows
that this belief does not stand. To illustrate this point, we
take two examples. The first example, illustrated in Figure
6, corresponds to the β-turn structure. As shown in Figure
6(b), the β-turn formed by the first 10 Cα atoms of BBA5
can be captured by the maximally connected bit-pattern
shown in Figure 6(a). The second example, shown in Fig-
ure 7, illustrates that a two turn β-sheet (Figure 7(b)) can
also be captured by a bit-pattern (Figure 7(a)). Finally, not
every type of bit-patterns can be mapped to a typical 3D
motif. This might be attributed to our entropy-based crite-
ria for selecting an "optimal" value of the parameter k in
the clustering task.

This demonstrates, to a certain extent, the advantage of
using 2D contact maps to analyze 3D protein conforma-
tions. Undoubtedly, using contact maps greatly reduces
the computational complexity, though at the cost of loss
in structural information. However, some of this informa-
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tion loss is re-compensated by mapping bit-patterns to
structural motifs in 3D conformations. More importantly,
by exploiting different features in contact maps (bit-pat-
terns in this work), we are able to connect 2D features
with features in 3D space. In the BBA5 case, by identifying
10 types of bit-patterns in contact maps, we indirectly rec-
ognize 10 different 3D structural motifs in the folding
conformations.

Re-labeling Bit-patterns with The Corresponding Cluster Label
In this step, we re-label all the previously identified bit-
patterns with their corresponding cluster label. Let p be a
labeled bit-pattern. It can be represented as follows: p =

(trajID, frameID, listCα, label). Here, trajID identifies a
folding trajectory, and frameID indicates the frame where
p occurs, listCα consists of all participating α-carbons of p,
identified by their position in the primary sequence.
Finally, label is the cluster label of p. For BBA5, label ∈ {g0,
g1, �, g9}, corresponding to the 10 approximately equiva-
lent groups (or types).

3.2 Mining Spatio-temporal Object Association Patterns
The preprocessing steps transform a 3D protein confor-
mation into a set of labeled 2D bit-patterns, that indirectly
capture the local 3D structural characteristics of the con-
formation. For the two BBA5 trajectories, each conforma-

Mapping between 2D bit-patterns and 3D sub-structuresFigure 5
Mapping between 2D bit-patterns and 3D sub-structures. The figure visualizes the representative 3D sub-structures 
corresponding to the 10 classes of bit-patterns identified in the contact maps along BBA5's two folding trajectories. The bit-
patterns shown here are randomly selected from their respective group for illustration purpose.

3D Motif Notation bit-pattern vs. 3D motif

α-helix α

#4 #7 #9
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tion contains an average of 6 bit-patterns. As for the five
GSGS trajectories, the average number of bit-patterns in
each conformation is 4.

As BBA5 and GSGS fold, the dynamics among their resi-
dues is constantly changing until it reaches an equilib-
rium. This means that two residues previously in contact
may become out of contact later. As a result, bit-patterns
present in one conformation may be absent in the next.
The evolving nature of contacting residues and in turn bit-
patterns, is essentially the consequence of a variety of
weak interactions among amino acids at different levels.
Such weak interactions include hydrogen bonds, electro-
static interactions, van der Waal's packing and hydropho-
bic interactions [24]. To capture these (potential)
interactions, a simple yet effective method is to consider
how close two amino acids are located from each other in
3D. We also adopt this method here. Specifically, we con-

sider interactions between local 3D motifs captured by
labeled bit-patterns. We denote such interactions as
"interactions among bit-patterns". Let pi and pj be two bit-
patterns in a protein conformation, and pi.listCα and
pj.listCα be the list of α-carbons involved in pi and pj,
respectively. We define piand pj as interacting bit-patterns if
at least one pair of α-carbons, each from pi.listCα and
pj.listCα are located within a short distance δ. Note that the
value of δ should be greater than the distance that is being
used to identify contacting α-carbons when generating
contact maps. In our analysis, we set δ = 10 Å.

It is noteworthy that the above notion of interacting bit-
patterns is new compared to our previous work, where
two bit-patterns are associated if their distance in the 2D
contact map space is below a certain threshold. This can
be misleading in the context of protein folding analysis.
As demonstrated in Figure 8, the two bit-patterns-BP #1

β-turns vs. maximally connected bit-patterns: an exampleFigure 6
β-turns vs. maximally connected bit-patterns: an example. (a) A type 8 bit-pattern is identified in the 166th frame of the 
BBA5 T23 trajectory. This bit-pattern corresponds to the the connected 1s in the table, where a '1' indicates two correspond-
ing Cα atoms are in contact,'-' otherwise. This pattern consists of the first 10 Cα atoms. (b) The 3D conformation of this frame, 
where the first 10 Cα atoms resembles a β-turn.

Cα 1 2 3 4
5 - 1 - -
6 1 1 1 -
7 1 1 1 1
8 1 1 1 -
9 1 1 - -

10 1 - - -

 5  10  15  20  25  30  35  40 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
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 15

 20

 25

 30

 35

 40

1

4

7

10

(a) (b)
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and BP #2-are only 2 amino acids away in the 2D contact
map. However, they can be relatively far apart in 3D. On
the other hand, although the bit-patterns BP #2 and BP #3
are relatively far apart from each other in the 2D contact
map, they are close to each other in 3D. Therefore, meas-
uring the distance between bit-patterns in the actual 3D
conformation is more robust with respect to capturing
potential interaction among local motifs.

So far, we have discussed our approach of using bit-pat-
terns in contact maps to characterize local 3D motifs and
further represent a protein conformation during folding.
We also define the notion of interacting bit-patterns in the

folding context. We are now ready to present our method
of summarizing folding trajectories to fulfill the two
objectives described in Section 2.3. The main idea is that
we can summarize a folding trajectory by characterizing
the evolutionary behavior of interactions among different
types of bit-patterns and in turn, the interactions among
local 3D motifs.

Definition of (minLink = 1) SOAP
As proposed in our previous work [5,25], such interac-
tions can be modeled and captured by discovering differ-
ent types of spatial object association patterns (SOAPs).
Essentially, SOAPs characterize the specific way that

β-sheets vs. maximally connected bit-patterns: an exampleFigure 7
β-sheets vs. maximally connected bit-patterns: an example. (a) A type 0 bit-pattern is identified in the 24201th frame of 
the GSGS T1 trajectory. This bit-pattern corresponds to the the connected 'x'-es in the table, where an 'x' indicates two corre-
sponding Cα atoms are in contact,'-' otherwise. It consists of Cα atoms from 5 through 20. (b) The 3D conformation of this 
frame, where the 5–20 Cα atoms resembles a β-sheet of two turns.

Cα 5 6 7 8 9 10 11 12 13 14
13 - - - - - x - - - -
14 - - - - - x x - - -
15 - - - - - x x - - -
16 - - - - x x x x x -
17 - - - x x x x - - x
18 - - - x x x x - - -
19 - - x x x x - - - -
20 x x x x x - - - - -
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objects, bit-patterns in this case, are interacting with each
other at a given time. Among the proposed SOAP types,
after a careful evaluation, we empirically select (minLink =
1) SOAPs to model the interacting bit-patterns in the fold-
ing process. Let p = (g1, g2, �, gk) be a (minLink = 1) SOAP
of size k, where gi is one of the 10 types of bit-patterns
described above. In the context of folding trajectories, p
prescribes that there exists k bit-patterns b1, b2, ..., bk in a
conformation, where bi.label = gi (1 ≤ i ≤ k). Furthermore,
for each bi, it interacts with at least one of the remaining
(k - 1) bit-patterns. Note that the k labels in p are not
mutually exclusive. For instance, one can have SOAPs
such as (7 9 9), which involves one type 7 bit-pattern and
two type 9 bit-patterns.

We further restrict ourselves to SOAPs that occur fre-
quently during the folding process (frequent SOAPs).
However, we are not ruling out rarely-occurring SOAPS in
our future studies. A SOAP is said to be frequent if it
appears in no fewer than minSupp frames in a trajectory. In
our studies, we set minSupp = 5 for BBA5 and 10 from
GSGS.

SOAP Episodes
The next step is to capture the evolutionary nature of the
folding process. We do this by identifying the evolution-
ary nature of SOAPs. As mentioned earlier, small proteins
like BBA5 and GSGS often fold hierarchically and begin
with local folded structures. As they fold, new SOAPs can

Discrepancy between distances in 2D and 3D spacesFigure 8
Discrepancy between distances in 2D and 3D spaces. Bit-patterns that are close to each other in the 2D contact map 
space, for instance, BP#1 and BP#2, can be distant from each other in 3D. Similarly, bit-patterns that are distant in 2D space, 
for instance, BP#1 and BP#3, can be close to each other in 3D.
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be created and existing one can dissipate. To capture such
evolutionary behavior, we proposed the concept of SOAP
episodes, which provide an effective approach to model the
evolution of interactions among spatial objects over time
[5]. To reiterate, a SOAP episode E is defined as follows: E
= (p, Fbeg, Fend), where p is a SOAP composed of one or
more bit-patterns, p was created in frame Fbeg and persisted
till frame Fend. Note that for a given p, it can be created
more than once during protein folding, and thus can have
more than one episode. To discover frequent (minLink =
1) SOAPs and their episodes in the trajectories of BBA5
and GSGS, we apply our SOAP mining algorithm as
explained in our previous work [5].

In summary, this mining phase produces the following
results: (i) A list of (minLink = 1) SOAPs of bit-patterns
that appeared in at least 5 conformations in each folding
trajectories for the protein BBA5 and 10 for GSGS; and (ii)
A list of episodes, ordered by beginning frame Fbeg, associ-
ated with each of these SOAPs.

3.3 Folding Trajectory Analysis
In this section, we describe our strategy on utilizing
SOAPs to summarize a folding trajectory and address the
two folding analysis issues described in Section 2.3.

SOAP-based Trajectory Summarization
The previous mining phase discovers a collection of fre-
quent (minLink = 1) SOAPs and the associated episodes in
each trajectory. Therefore, it identifies all the conforma-
tions in the trajectories that contain at least one frequent
(minLink = 1) SOAPs. For instance, the last conformation
in trajectory T23 (Figure 1(c)) has two SOAPs of size 2:(5
8) (i.e., association of a type 5 and a type 8 bit-pattern)
and (7 8), and three SOAPs of size 1: (5), (7), and (8),
while the last conformation in trajectory T24 has three
SOAPs: (7 8), (7) and (8). This leads to our SOAP-based
approach for folding trajectory summarization.

To summarize a folding trajectory, we perform the follow-
ing three steps. First, for each conformation, we identify
all the frequent SOAPs that appear in it and use these
SOAPs to represent this conformation. Note that not every
conformation contains frequent SOAPs, especially when
minSupp is set high. Second, for each SOAP-representable
conformation, we carry out two tasks on its associated
SOAPs. We next use the folding trajectories of BBA5 to
explain how these two tasks are carried out.

In the first task, for each SOAP, we mark the relative loca-
tion of each involved bit-pattern in the primary sequence
of BBA5. This is done by identifying the segment of BBA5
where the majority of a bit-pattern's α-carbons are
located. The segment can be one of the following as
described in Section 2.2: F1, residues 1 – 10; F2 , residues

11 – 23; F3, residues 6–17; and F4: residues 1–5 and 18–
23. Let us again take the last conformation in T24 as an
example. It can be summarized by three SOAPs: (7 8), (7)
and (8). When we look at the list of α-carbons involved in
these bit-patterns, we find out that 7 is mainly located in
F2 and 8 in F1. Therefore, we mark the three SOAPs as fol-
lows: (8.1 7.2), (7.2) and (8.1). We re-arrange the bit-pat-
terns in a SOAP by their relative locations in BBA5. This
super-imposes BBA5-specific spatial information to a
SOAP. In the second task, we prune away redundant
SOAPs after marking each bit-pattern with its relative loca-
tion in BBA5. A SOAP is redundant if it is embedded in
another SOAP. For instance, in the previous example, we
can prune away (8.1) and (7.2) as both are embedded in
(7.2 8.1). After pruning, most conformations in such a
small protein can often be represented by a single SOAP.
We can even take this summarization a step further, where
we replace a bit-pattern with its corresponding 3D motif,
as illustrated in Figure 5. For instance, SOAP (7.2 8.1) will
be transformed into (β.1 α.2). We refer to such SOAPs as
generalized SOAPs, and the corresponding trajectory as a
generalized trajectory. Note that in a generalized trajectory,
multiple types of bit-patterns can be mapped into a single
type of 3D motif. For instance, the α-motif corresponds to
three types of bit-patterns 4, 7, and 9 (Figure 5). Figure 9
shows a segment in each summarized BBA5 folding trajec-
tory before and after being generalized with 3D motifs.

Detecting Folding Events and Recognizing Ordering Among Events
Once each folding trajectory is summarized into general-
ized SOAPs, it is fairly straightforward to detect folding
events such as the formation of α-helix or β-turn like local
structures. This can be done by simply locating the frames
that contain the local motif(s) of interest. We can also eas-
ily identify native-like conformations, by finding those
that contain the generalized SOAP (β.1 α.2). Finally,
based on the summarization, one can quickly identify the
ordering of folding events in a trajectory. For instance, to
check which secondary structure forms more rapidly, α-
helix or β-hairpin, one can simply compare the first occur-
rence of these structures in the summarized trajectory
(Figure 9(b)).

Identifying the Consensus Partial Folding Pathway Across Trajectories
To do this, we simply compute the longest common sub-
sequence (LCS) [17] between two summarized trajecto-
ries. One can utilize the summarization either before the
3D motif generalization (Figure 9(a)) or after (Figure
9(b)). We use the latter in our analysis. Based on the LCS
of generalized SOAPs, we construct the consensus folding
pathway by identifying pairs of conformations, one from
each trajectory, along the LCS of two summarized trajec-
tories. In other words, the resulting consensus pathway
consists of a sequence of conformation-pairs of similar 3D
structures. Notice here that the comparison between 3D
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protein conformations (as described in Section 2.2) is
done by using bit-patterns to model local structural
motifs, and associations of bit-patterns (SOAPs) to char-
acterize the global structure. This forms a hierarchical
comparison and is in accordance with the hierarchical
folding process of small proteins.

4 Results
In this section, we report results on analyzing the two tra-
jectories of the small synthetic protein BBA5 and the five
trajectories of another small protein GSGS. However, we
will focus on BBA5. In previous sections, we have
described in detail the structure of BBA5 of GSGS and
their folding trajectories. Such information is summarized
and tabulated in Table 4 and Table 5.

4.1 Detecting and Ordering Folding Events
We summarize both folding trajectories of BBA5 into a
sequence of SOAPs as illustrated in Figure 9. Coincidently,
both summarized trajectories consist of 64 conforma-
tions.

Based on these summarized trajectories, we can quickly
identify all the conformations where the first α-helix-like
or β-turn-like local motifs were formed. For trajectory T23,
the first α-helix-like motif was identified in frame 26, and
the first β-turn-like local motif was formed in frame 63.
For the other trajectory T24, the frames were 29 and 38.
This is in accordance with experimental results that α-hel-
ices generally fold more rapidly than β-turns. However,
since we only consider frequent SOAPs, it is very possible
that we might miss the actual first formation of such local
motifs. To address this issue, we might need to consider
rarely occurring SOAPs. We plan to investigate this in the
future. For the two events related to β-turn formation, for-
mation of two extended strands and formation of the
turn, we found that for both trajectories, the formation of
extended strands preceded the formation of the turn.

Also, we identify two conformations in each trajectory
that show native-like structure. We do this by locating the
conformations associated with the generalized SOAP (β.1
α.2). Figure 10 presents the 3D structure of these native-
like conformations along with the native conformation of

Table 4: A summary of the BBA5 folding trajectories.

Protein PDB Identifier: BBA5; Primary sequence: 23 residues; Designed protein;
Native fold: N-terminal 1–10 β hairpin, C-terminal 11–23 α-helix

Trajectory Two trajectories: T23 and T24;
T23: 192 conformations; T24: 150 conformations

Contact map Based on contacts between α-carbons.
Two α-carbons are in contact if their Euclidian distance is ≤ 8.5 Å

Bit-patterns A total of 352 unique maximally connected bit-patterns were identified from all conformations;
Average number of bit-patterns per conformation is 6;
Bit-patterns are further classified into 10 approximately equivalent types

Interacting bit-patterns If at least one pair of α-carbons, one from each bit-pattern, is of Euclidian distance ≤ 10 Å
Frequent SOAPs A SOAP is frequent if it appears in ≥ 5 conformations;

A total of 444 frequent SOAPs identified in trajectory T23, and 258 in T24
Consensus partial folding pathway We identified a consensus partial folding pathway across the two trajectories.

It is composed of 71 pairs of similar conformations, one from each trajectory

SOAP-based folding trajectory summarizationFigure 9
SOAP-based folding trajectory summarization. An sample segment in each of the two BBA5 folding trajectories is pre-
sented, (a) After superimposing the relative location of each bit-pattern and pruning away redundant SOAPs. (b) After further 
generalizing each bit-pattern by corresponding 3D motif.

T23 T24

frame ID SOAP
. . . . . .
100 (8.1 5.4 )
101 (5.2 5.2 1.4 )
103 (6.1 5.2 5.4 )
110 (5.4 1.4 )
111 (1.1 3.2 )
112 (2.2 )
. . . . . .

frame ID SOAP
. . . . . .
48 (1.1 5.4 )
50 (5.2 5.2 6.4 )
63 (1.1 5.2 5.4 )
69 (1.4 5.4 )
71 (1.1 2.2 )
72 (2.2 )
. . . . . .

T23 T24

frame ID SOAP
. . . . . .
100 (β.1 ‖.4 )
101 (β.4 ‖.2 ‖.2 )
103 (β.1 ‖.2 ‖.4 )
110 (‖.4 β.4 )
111 (β.1 a.2 )
112 (b.2 )
. . . . . .

frame ID SOAP
. . . . . .
48 (β.1 ‖.4 )
50 (‖.2 ‖.2 β.4 )
63 (β.1 ‖.2 ‖.4 )
69 (‖.4 β.4 )
71 (b.2 β.1 )
72 (b.2 )
. . . . . .

(a) (b)
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BBA5. One can see that our SOAP-based comparison does
well in identifying similar 3D conformations.

4.2 Consensus Partial Folding Pathway Across Trajectories
Based on the generalized trajectory summarization of
BBA5, we identify a consensus partial folding pathway of
length 71. In other words, 71 pairs of conformations, one
from each trajectory, are considered similar to each other.
Figure 3 displays four such pairs along this consensus
folding pathway. For instance, the two conformations
shown in Figure 3(c), corresponding to the 182th frame in
the T23 trajectory and the 116th frame in the T24 trajectory
of BBA5 respectively, are considered structurally similar,
since both conformations exhibit an α-helix in the left
half of the backbone, and a β-turn in the right half.

Figure 11 illustrate 5 pairs of conformations along the
consensus folding pathway of the 1st and 3rd trajectories of
GSGS. And Figure 12 illustrates 5 conformation-pairs
along consensus pathway of the 1st and 5th trajectories of
GSGS. We are currently in the process of identifying con-
sensus pathways across more than 2 trajectories of GSGS.
Note that by using bit-patterns, we naturally realize a rota-
tion-invariant comparison. To illustrate this, let us again
examine the afore-discussed conformation pair of BBA5.
One notices that although the β-turn in the two confor-
mations orients differently, the two conformations are

still identified as being structurally similar by our
approach.

Currently, we rely on visual tools to justify these consen-
sus pathways. We did attempt to use several measure-
ments that have been used previously to quantify the
similarity between 3D protein conformations, but to no
avail. These measurements include RMSD, contact order,
and native contacts. If we identify the pathway based on
the best match given by any of the above measurements,
we often ended up with a very short consensus pathway
(as short as 10 frames). Two conformations are said to be
a best match if they have the lowest RMSD or have the
smallest difference in contact order or native contacts.
Moreover, different best-matched measurements ren-
dered very different consensus pathways. Finally, we
notice that the best-matched conformations based on any
of such measurements can often exhibit very different
structural characteristics. We are investigating alternative
methods for quantitative validation of our results.

5 Conclusions and Ongoing Work
In this article, we present a novel approach to analyze pro-
tein folding trajectories and a case study on the small pro-
teins BBA5 and GSGS. We capture a variety of structural
motifs in the 3D protein conformations by non-local bit-
patterns identified in their 2D contact maps. By modeling

The native-like conformations identified in the two BBA5 trajectoriesFigure 10
The native-like conformations identified in the two BBA5 trajectories. According to the SOAP-based summarization 
of the two BBA5 folding trajectories, two native-like conformations are identified in each trajectory.
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(a)Native fold. (b)T23: frame 181 (c) T23: frame 191 (d) T24: frame 111 (e) T24: frame 140

Table 5: A summary of the GSGS folding trajectories.

Protein Name: GSGS or Beta3s; Primary sequence: 20 residues; Designed protein;
Native fold: three stranded anti-parallel β-sheets with turns at 6–7 and 14–15

Trajectory Five trajectories: T1, T2, T3, T4 and T5;
T1 : 25, 664 conformations; T2 : 30, 075 conformations;
T3 : 19, 649 conformations; T4 : 25, 263 conformations;
T5 : 25, 664 conformations;

Contact map Based on contacts between α-carbons.
Two α-carbons are in contact if their Euclidian distance is ≤ 8.5 Å

Bit-patterns A total of 50, 572 unique maximally connected bit-patterns were identified from all conformations;
Average number of bit-patterns per conformation is 4;
Bit-patterns are further classified into 12 approximately equivalent types

Interacting bit-patterns If at least one pair of α-carbons, one from each bit-pattern, is of Euclidian distance ≤ 10 Å
Frequent SOAPs A SOAP is frequent if it appears in ≥ 10 conformations;
Page 14 of 16
(page number not for citation purposes)



Algorithms for Molecular Biology 2007, 2:3 http://www.almob.org/content/2/1/3

Page 15 of 16
(page number not for citation purposes)

Selected conformation-pairs along the consensus partial folding pathway across the 1st and 5th trajectories of the GSGS peptideFigure 12
Selected conformation-pairs along the consensus partial folding pathway across the 1st and 5th trajectories of 
the GSGS peptide. The figure illustrates five pairs of conformations, one from each trajectory, along the consensus partial 
folding pathway identified in the 1st and 5th trajectories.
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Selected conformation-pairs along the consensus partial folding pathway across the 1st and 3rd trajectories of the GSGS peptideFigure 11
Selected conformation-pairs along the consensus partial folding pathway across the 1st and 3rd trajectories of 
the GSGS peptide. The figure illustrates five pairs of conformations, one from each trajectory, along the consensus partial 
folding pathway identified in the 1st and 3rd trajectories.
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the interactions or spatial relationships among bit-pat-
terns as SOAPs and SOAP episodes, we effectively charac-
terize the evolutionary nature of the folding process. We
also describe two methods to summarize folding trajecto-
ries by super-imposing protein specific information and
3D motifs onto SOAPs. Utilizing the summarized trajec-
tories, we demonstrate that one can detect folding events
and the temporal order among events. We also show that
through comparing such summarized trajectories, one
can identify a partial folding pathway common to multi-
ple trajectories.

We realize that it is a very hard and challenging task to
understand the folding mechanism of proteins. Based on
our analysis results over a small protein, we are not in the
position to make any general comments on the protein
folding problem. However, the approach presented here
is general and applicable to any folding trajectories.

Presently, we are in the process of addressing several other
related issues. First, we are automating the mapping
between 2D bit-patterns and 3D motifs. Second, we are
further analyzing the identified consensus folding path-
ways and validating them through other means. Third, it
is well-known that the side chains of a protein play a cru-
cial role in the folding process. We are currently investigat-
ing different approaches to involve side chains in our
analysis. Finally, we are investigating whether bit-patterns
can be used to index and manage protein folding simula-
tion data.
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