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Abstract
Background: Some amino acid residues functionally interact with each other. This interaction will
result in an evolutionary co-variation between these residues – coevolution. Our goal is to find
these coevolving residues.

Results: We present six new methods for detecting coevolving residues. Among other things, we
suggest measures that are variants of Mutual Information, and measures that use a multidimensional
representation of each residue in order to capture the physico-chemical similarities between amino
acids. We created a benchmarking system, in silico, able to evaluate these methods through a wide
range of realistic conditions. Finally, we use the combination of different methods as a way of
improving performance.

Conclusion: Our best method (Row and Column Weighed Mutual Information) has an estimated
accuracy increase of 63% over Mutual Information. Furthermore, we show that the combination of
different methods is efficient, and that the methods are quite sensitive to the different conditions
tested.

Background
Phylogenetic analysis has evolved immensely in the last
30 years, and is now contributing to many exciting discov-
eries. When performing phylogenetic analysis, it is often
assumed that the evolution in one site in a biological
sequence is independent of the remaining sites. That
makes the task of rebuilding evolution much more tracta-
ble and it is in fact a very good assumption in most cases.
In some cases, however, sites are not "blind" to a few of
the remaining ones. Their evolution is dependent on these
other sites. This can occur, for example, when two residues
are close in the protein spatial structure, and establish
some kind of interaction. In such conditions, the evolu-

tion of these sites will depend on each other. A change in
one of them will cause the other one to change, and so
changes in these sites will occur close in time. This is what
we call coevolution. Coevolution has been conceived of as
occurring in a variety of settings (see Pollock[1] for a
review), including between neighbouring amino acids in
a protein's final structure, as compensatory mutations (as
in the case of drug-resisting viruses) or between interact-
ing proteins (as in the work of Pazos et al.[2]). But recent
findings[3] have shown that coevolving residues seem to
be important in the folding of proteins as well, and that
they are not necessarily neighbours in the final structure.
So the problem "what causes residues to coevolve?" is far
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from settled. But there is yet another interesting question:
"how to find which residues are coevolving?" This ques-
tion has been addressed in the last ten years by different
authors with different methods. The starting point of all
these methods is a Multiple Sequence Alignment (MSA).
Such an alignment will usually have both conserved and
variable sites, with different levels of variability. The align-
ment will also have some phylogenetic signal. Both these
characteristics impose major obstacles on finding coe-
volving sites. Importantly, it is possible to get perfect co-
variation between a pair of non-interacting sites, simply
due to the structure of the phylogenetic tree. As sites
evolve through a phylogenetic tree, their evolution shares
a pattern with the one of coevolution, as can be seen in
figure 1.

As an example from comparative biology, where this
problem was first identified, lets imagine we wished to
compare mammals and birds in many characters, looking
for the coevolution in these characters. Their simultane-
ous absence or presence would be taken as a proof of
interaction. We would rightly conclude that having wings
has an influence on the presence of light bones, but we
would unfortunately also conclude that feathers inter-
acted with laying eggs. In fact, any two characters that seg-
regate according to the phylogeny would be perceived to
be coevolving. A pioneering method in extracting the phy-
logenetic signal in such situations was made by Ridley et
al.[4], followed by the one of Maddison[5]. These meth-
ods estimate the ancestral state for the characters, and
count the co-occurrence of transitions between states. The

later method of Harvey and Pagel[6] further incorporated
branch length information and was framed as a statistical
model. Coming back to sequence analysis, most charac-
ters (sites) indeed segregate according to the phylogeny
(thus enabling us to reconstruct it), and are therefore hard
to separate from truly coevolving sites. One way of going
around the problem has been to use highly divergent
sequences, in which the phylogenetic signal is weak. How-
ever, it is desirable to construct methods that effectively
counter this obstacle. The work of Pollock et al.[7] pre-
sented one such method, based on likelihood ratio tests.
The only obstacle to this methodology is that it is compu-
tationally intensive and dependent on the knowledge of
the phylogeny. On the other hand, it uses that knowledge
to make better predictions. The recent work of Dimmic et
al.[8] follows a similar path, but under the Bayesian
framework. Most other authors have used simpler
approaches, which could eventually be used on large data-
sets. A majority of these approaches consists of calculating
some statistic between all pairs of sites, resulting in a
matrix, and these are therefore called "matrix-based meth-
ods"[9-17]. Some of these statistics are variations of corre-
lations between some chemico-physical properties of the
aminoacids normalized by some quantity, usually their
variances[9-11,14,16], others are based on Mutual Infor-
mation[12,15,18], or in some heuristics not very different
from correlation estimation[13]. Exceptions are the meth-
ods of Dekker et al.[19] and Suel et al.[20], which are "per-
turbation-based" methods, in which sub-alignments are
build and analyzed. Only a few of these methods, how-
ever, tried to tackle the phylogenetic confounding that

The Phylogenetic signal mimics coevolutionFigure 1
The Phylogenetic signal mimics coevolution. A hypothetical phylogeny, the extant sequences and the Mutual Information 
matrix between the 4 sites of the sequence. Two independent events result in a set of sequences with high mutual information 
between sites 1 and 4.
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makes this problem difficult. That was done either by con-
firming the coevolution predictions in subclades of the
tree[17] or by weighting each pair of sites by their phylo-
genetic dependency[12]. Another main obstacle to accu-
rate coevolution detection has stemmed from biases on
site conservation, as shown by Fodor et al.[21]. Recently,
however, the conservation bias problem has been
addressed [12,15,17,18]. There is the additional problem
of not having a good biological control. As we haven't yet
answered "what causes residues to coevolve?" we are not
able to establish a proper benchmark based on real data.
That need for a proper benchmarking platform has caused
many artefacts to be published as real findings. We have
thus built a complete benchmarking system for this prob-
lem, which we use to compare our methods. It has some
differences to other benchmarking systems recently made
available[13,22]. In this work we simulate alignments of
protein sequences including coevolving pairs of sites with
differing rates of evolution, differing rates of coevolution,
various numbers of taxa and using different methods to
simulate coevolution. Simulating these variations is
needed to properly evaluate the presented coevolution
detecting statistics, as the variations occur in biological
datasets and the statistics are sensitive to their effects. It
would be more biologically realistic to simulate evolution
considering the disturbance to the protein 3D structure,
an idea first developed by Parisi and Echave[23] and
whose further developments are well described in Rod-
rigue et al.[24]. We have opted not to do so because the
statistics under evaluation do not account for all the extra
information available in datasets simulated in this way,
but that would definitely be an advantage for more com-
plex methods for detecting coevolution, specially for
methods performing n-way comparisons, Such methods
would overcome the limitation of detecting n-way coevo-
lution only through its pair wise components, which pre-
vents the detection of networks of sites having many weak
pair wise interactions.

Methods
Simulated Datasets
Our goal was to compare the performance of the coevolu-
tion measures presented in this paper on a number of
datasets that covered a wide range of assumptions about
how residues evolve and coevolve in real biological data.
To do so, we simulated many and varied protein align-
ments including coevolving residues, applied the above-
mentioned methods to find these residues, and then com-
pared their performances. The alignments varied in the
number of taxa, in the evolutionary and coevolutionary
rates, and in the method of simulating co-evolution. Spe-
cifically, each simulated alignment was 300 residues long;
260 residues were independently evolved, while the
remaining 40 residues consisted of 20 pairs of coevolving
sites. The sequences were simulated along strictly bifurcat-

ing trees, of 32, 64, 128 or 256 taxa, with same-size
branch lengths. Evolution along the branches followed a
BLOSUM62 matrix of transition probabilities[25] – which
can be derived from the more common log-odds format –
raised to the power r, thus specifying the evolutionary
rate. Each alignment had residues evolving at 4 different
rates, with values of r of 1 (quickest), 1/5, 1/20 and 1/50
(slowest).

The pairs of coevolving sites were done as described by
Pollock et al.[7]. One site was the "driver", evolving as an
independent site (also at one of the 4 different rates). The
other one was the dependent site. Evolution at the
dependent site is, to a level, dependent on the state at the
"driver" site. For every state at the "driver" site there is a
favoured state at the dependent site. Evolution at the
dependent site tends to follow the one at the "driver " site,
and this tendency is proportional to a "coevolution fac-
tor", c. Coevolution is an easy-to-understand but hard-to-
define concept; as we wanted our results to be as general
as possible, we modelled coevolution using three different
approaches. In all approaches, the evolution at the
dependent site was determined by a BLOSUM matrix,
transformed by the coevolution factor. The BLOSUM
matrix of transition probabilities represents the probabil-
ity of change from any amino acid (one per row) to any
other (one per column). So if we have, for example, a tryp-
tophan as an ancestor, we will use the tryptophan row of
the BLOSUM matrix.

P(aai|w) = BLOSUMwi (1)

This row will have higher values on the columns corre-
sponding to amino acids similar to tryptophan. On each
approach for simulating coevolution, a transformation of
the dependent's site BLOSUM matrix by the coevolution
factor was applied to the different subsets of columns in
the matrix corresponding to a state. That is, the columns
belonging to the chosen subset were multiplied by the
coevolution factor, thus having their probabilities
increased. After the multiplication, the cells were normal-
ized so that the sum of the line still equals one:

and thus the dependent site had its evolution conditioned
by the "driver" site. The "driver" site "chooses" the amino
acids substitutions that will be favoured by increasing the
value on the respective columns. The way the subset of
columns is defined is what differs between the three coev-
olution models explained next:
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1) Model cluster
The amino acids were grouped into 7 clusters. These clus-
ters were generated by using a non-hierarchical clustering
method, k-means, on a transformation of the BLOSUM62
matrix, thus yielding the evolutionarily most meaningful
division of amino acids into 7 clusters. They are shown in
Table 1.

These clusters were the states of the model, defined in
equation 2. Each site will evolve according to the row in
the BLOSUM matrix corresponding to its own previous/
ancestral amino acid. This row, however, will have the col-
umns corresponding to amino acids belonging to group j
multiplied by the coevolution factor. That is, if the
"driver" site has any amino acid belonging to group j, the
dependent site will be pushed into the corresponding
state (which for simplicity is also amino acids belonging
to group j).

2) Model one-on-one
If Nature wanted amino acids to be clustered into 7
groups, there would only be 7 amino acids, some may say
(including ourselves). We therefore also used the one-on-
one model of coevolution, where the states are instead the
individual amino acids. That is, for each amino acid in the
"driver" site there is a favoured one in the dependent site.
As we have seen, and for simplicity, we chose it to be the
same amino acid, and therefore evolution on the depend-
ent site follows the row of the BLOSUM matrix of the pre-
vious/ancestral amino acid, having the column
corresponding to the favourite amino acid multiplied by
the coevolution factor, c.

3) Model BLOSUM
This model is very similar to the one-on-one. The only dif-
ference is the row of the BLOSUM matrix used for deter-
mining the probabilities of change. In the previous
model, the row was the one of the ancestral amino acid.
That is, if the dependent site had an alanine as a residue,
and the "driver" site had changed to a proline, the evolu-
tion at the end of the branch would follow the BLOSUM
row corresponding to the alanine, with an increase prob-

ability of changing to a proline. Therefore, it would have
high chances of changing into a proline and of staying as
an alanine, and mild chances of changing into amino
acids similar to alanine. In the BLOSUM model, the BLO-
SUM row taken is instead the one corresponding to the
"driver" site's new amino acid, being given thus more
importance to the new physico-chemical demands of that
site. In this example, it would be the proline row, having
thus increased chances of changing into proline and
amino acids similar to proline.

P(Depstate|Dep = j &Driver = i{i∈state}) = 
BLOSUMi, state × coev.f (3)

This effect, however, should be quite small, as it proved to
be. For each model, we tried three different values in the
coevolution factor c, yielding a strong, medium or weakly
coevolving version. We made 10 replicates of each align-
ment through all combination of coevolving model, c,
and number of taxa. Each alignment had 20 coevolving
pairs.

Analysis
After the alignments had been simulated, we applied the
different methods for detecting coevolution to analyze
them. All of these methods calculate a statistic for each
possible pair of sites in the sequence. Each site is in fact an
ordered column of residues. The calculation of a statistic
for each pair yields an n by n-1 upper triangular matrix, n
being the length of the protein sequence. The cells in the
matrix are then ranked and a rank list is presented as the
output. The statistics used for each pair wise comparison
between sites were:

1) Mutual Information
Mutual Information (MI) is a widely used statistic in sev-
eral fields, including the present one[26]. It appeared first
in Shannon's book/article[27] and has later gained
ground as Information Theory developed. It measures the
amount of information that one random variable con-
tains about another random variable.

where A and B are the two sites being compared, and i and
j run through all the occurring amino acids in each site.
The base for the logarithm is 20, the number of letters in
the protein alphabet. This causes the MI statistic to scale
to a maximum of 1. To estimate MI, here and in the fol-
lowing sections, we have estimated all the probabilities
involved by their correspondent observed frequencies.
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Table 1: Amino acid clusters used in model "Cluster"

Cluster number: Amino acids

1 A P S T
2 I L M V
3 F W Y
4 N D
5 G
6 R Q E H K
7 C

These clusters were generated by applying the k-means algorithm to a 
distance matrix between the amino acids based upon BLOSUM62.
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2) Mutual Information of adaptable logarithmic base
MI between two columns in an alignment reaches the
maximum value of 1 if and only if three conditions are
met. First, that there is perfect co-variation between the
residues present in two sites. Second, that all the 20 differ-
ent amino acids occur in the two sites (this is due to the
logarithmization of base 20). And finally, that the 20 dif-
ferent amino acids are present in equal frequencies. The
MI score between two pairs of sites is dependent on these
three conditions. We believe that only the first is a desira-
ble property for a measure of coevolution. The other two
properties, even though it can be argued to carry some
desired coevolution effects, are also prone to raise the MI
score of false positives. If one uses MI to estimate coevolu-
tion on a simulated dataset without any coevolving sites,
one will obtain a clique of the quickest evolving sites coe-
volving with each other (data not shown). These charac-
teristics of MI seem to not have been noticed by most
previous publications, such as[28], until it was specifically
addressed by Martin et al.[15]. To counter the second con-
dition, we propose the Mutual Information of Adaptable
Logarithmic Base (MI Adp):

where #i represents the number of different amino acids
occurring in site A, and #j in site B.

By using a logarithmic base, which is the geometric aver-
age of the number of different amino acids present in each
site, we make it possible for every score to range from 0 to
1, independently of the number of different amino acids
present in the two original sites.

3) Simple correlation
The MI Adp measure is independent of the number of dif-
ferent amino acids present in each pair of sites, but will
still favour sites in which the different amino acids occur
at even frequencies. That is a consequence of the logarith-
mization, as the function

with 0<x<1 has its maximum at x = 1/n. To use a measure
that is solely dependent on the correlation between sites,
we simply used:

Which can also be seen as MI without the logarithmiza-
tion. This measure has the desirable property of being
only dependent on the correlation between the sites. A
possible problem is that by neglecting the diversity of
amino acid composition, it will score very conserved pairs
highly, including the totally conserved sites. Thus, for
totally conserved sites we, a posteriori, assigned the value
0 to the estimator, as these conserved sites are obviously
not coevolving.

4) Row-column weighting
Let us think of every site in the alignment as a column-vec-
tor. If the sequences had no evolutionary signal and there
were no constraints, the vector would approach n random
realizations from a multinomial distribution with proba-
bilities reflecting the amino acid composition. For a suffi-
ciently high n (number of sequences), the chance of a
vector of length n having the same pattern of conservation
as another site would then be very small, and no false pos-
itives would result.

However, when there is evolutionary signal, sequences
that are more closely related will tend to have the same or
similar amino acids when compared with more distantly
related sequences. This means that some patterns of
amino acid conservation are much more common in the
alignment columns than others. This is, in fact, the rea-
soning behind the construction of phylogenetic trees: sites
are grouped into patterns, and the resulting tree is the one
which is compatible with the majority of observed pat-
terns.

When computing measures of similarity between sites, the
pairs made of sites that have the same pattern will, of
course, have high scores (let us not forget that coevolution
will also yield the same pattern of conservation). The
chance of pairs of non-coevolving sites having a high
score will then increase with the chance of two sites shar-
ing the same pattern of conservation. Therefore, sites that
have a common pattern of conservation have much
higher chance of causing false positives pairs. This can be
seen when looking at a MI plot between all sites. On figure
2a, we have a MI plot of an alignment of 256 taxa, without
coevolving pairs, with 4 black lines superimposed on it
(lets ignore these lines for the moment). On figure 2b, we
have a random shuffling of the cells from the MI plot. Two
things can be observed in figure 2a. First, that quickly
evolving sites have, on average, higher MI values (sites on
the left are the quickest, on the right the slowest evolving
ones). That is evident in the orange triangle on the top-left
corner of the matrix, followed by the yellow segment and
finally the two blue ones. Secondly, figure 2a has much
more row-and-column dependency. That translates to
some lines and rows having many high scoring cells,
while others have mostly low scoring cells. That can be
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Plots of MI values for an alignmentFigure 2
Plots of MI values for an alignment. The axis values represent the sites in the alignment, and the values in the matrix, 
depicted in color, are the MI values. a) top of page: Standard MI plot of a given alignment. The superimposed black lines are the 
matrix cells used for RCW the cell in white (under the black lines) b) in the middle: Randomization of the plot in a). c) bottom 
of page: RCW MI of the same alignment.
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perceived by looking at figure 1a and really "seeing" rows
and columns. That is not possible to do in figure 2b. The
row-and-column effect is caused by sites with a common
pattern of conservation scoring high against each other –
these sites are the ones that evolve more "accordingly" to
the phylogenetic tree. It thus seem logical to weight each
site pair by the average score of the constituting sites
(which are the cells under the black lines as an example in
figure 2a), as in:

where MI.j denotes the sum of the Mutual Information
matrix over all lines in column j. We call this measure
RCW (Row-Column-Weighting). Performing RCW on fig-
ure 2a, yields figure 2c. It can be seen that the row-column
dependency is now weaker, albeit still present, and that
the highest values of RCW MI are not predominantly
present in the quickest evolving sites, as they were in the
figure 2a. The use of other functions besides the arithme-
tic average might improve the removal of the row-column
dependency, but most of the remainder is due to the fact
that it is a simultaneous bi-dimensional optimization.
The weighting can also be performed excluding the top
hits of every row/column, to accommodate for more than
two-way coevolution.

As RCW is a weighting of an existing matrix, it is compat-
ible with all matrix-based methods. We therefore tested
RCW with all the remaining statistics presented in this
work.

5) Multi-dimensional amino acid representation (MDAR)
In previous work addressing the question of how to detect
coevolution, there have been two main approaches to
looking at the sequence data, namely one where the focus
is on individual amino acids, and another where the focus
is instead on groups of amino acids. In our view, both
approaches have drawbacks. The first approach treats all
the 20 × 19 possible amino acid substitutions as different.
A huge amount of evidence in phylogenetic science points
to this not being the case. For instance, serine is physico-
chemically similar to threonine, and substitution with the
former is in some sense similar to substitution with the
latter. The second approach has two problems: it relies on
just one out of the many possible ways of grouping amino
acids, and it treats amino acids within any group as com-
pletely identical while amino acids in different groups are
seen as entirely different.

We have tried to accommodate for the similarities
between amino acids by representing each amino acid by

a vector of length 20, each dimension being a measure of
the similarity between that amino acid and each other
amino acid. This vector is, in fact, a row from the
BLOSUM62 matrix, which represents similarities between
amino acids based on empirically observed substitution
patterns. Therefore, each site in the alignment becomes a
matrix instead of a vector. By representing amino acids in
this multidimensional fashion we solve the above-men-
tioned problem on how to categorize amino acids, but we
are left with the problem of measuring coevolution.
Mutual Information and similar statistics have no equiva-
lent in this framework. So to compare two sites we start by
calculating the correlation between them. We do that by
calculating the Mantel correlation between the two matri-
ces that represent each site.

6) Multi-dimensional amino acid representation vs tree
Finally, we also tried to incorporate the phylogenetic sig-
nal into the Multi-dimensional amino acid representa-
tion, as we suspected that sites with a strong phylogenetic
signal would also be "correlated" to the phylogenetic tree,
as suggested in Figure 1. Specifically, we used the distance
matrix of the tree as a measure of phylogenetic signal, and
normalized the Multi-dimensional amino acid represen-
tation by the Mantel correlation of each of its sites to the
distance matrix, as in the formula below:

where "corr" stands for Mantel Correlation. The real calcu-
lation was a transformation of the above one with the
denominator scaled between 1 and 0 and then multiplied
by the numerator, to prevent divisions by 0 or extremely
low values.

Evaluation of performance
To evaluate the performance of the methods on each
alignment, we used the Area Under the ROC Curve (AUC)
using[29]. The AUC is calculated from a ranked list, being
threshold independent. It has the value 1 when all the
positives are ranked higher than the negatives. In our case,
the list is the output of each method, and with alignments
of length 300 the list can extend up to 300 × 299/2 =
44850 pairs of sites. For simplicity, we considered only
the 200 highest ranked pairs. In case some of the coevolv-
ing pairs were not present in the best 200, they were
placed at the bottom of the list. This procedure means that
the expected value of a random classifier is ≈ 0 (in most
instances where AUC is applied, the whole list is used, the
expected value of a random classifier is 0.5).

RCW A B
MI

MI MI MI M MI

n

ij

j i j i ij
( ; )

. . . .
= + + + −

−
2

2 2

(8)

MDARvsTree
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⋅
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Results and discussion
General performance
As mentioned in the previous section, we simulated align-
ments containing 20 pairs of coevolving residues. This
was done for 4 different numbers of taxa, for 3 different
levels of coevolution and with data being simulated by 3
different methods. For each combination of these condi-
tions, we generated 10 alignments (replicates) and ana-
lyzed each one of them by the different methods
presented in Materials and Methods.

To compare the methods across all the different condi-
tions, we performed a 4-way-Analysis of Variance
(ANOVA) choosing as the dependent variable the Area
Under the ROC Curve (AUC) of each alignment. The
Analysis of Variance allows the comparison of the effects
of all other variables (number of taxa, method of analysis,
model of simulation, coevolution factor) on the depend-
ent variable (the AUC), as well as checking if any of these
variables interact with each other (for example, a given
method of analysis being much better under a specific
model of simulation). Given the large sample size, it is
not surprising to find that all components had a signifi-
cant effect (at 0.01) in the dependent variable. Moreover,
interactions were also present, including the ones
between the method and all other components. This

means that the relative performance of the different meth-
ods is dependent on the simulation conditions. Indeed,
the simulation covered a wide range of conditions; on one
extreme (low coevolution factor, few taxa), it was very
hard for even the best methods to find the coevolving res-
idues. On the other extreme (high coevolution factor,
many taxa), all coevolving residues consistently ranked
top of the list. When comparing the performance of differ-
ent methods, most differences were found to be signifi-
cant (see figure 3 for details)

One can see that all non-Row-and-Column-Weighting
methods outperform plain Mutual Information. One can
also see that Row and Column Weighting improves all
those methods which do not incorporate a multidimen-
sional amino acid representation, in which case it totally
ruins their performance. The most striking improvement
is when Row and Column Weighting is done on a Mutual
Information matrix, in which case the performance is
63% better than Mutual Information is on its own.

Performance under different evolution models
We then compared the performances for each kind of sim-
ulation model (figure 4). In this way, we can see how the
analysis methods perform under differently simulated
data and, conversely, how important the choice of simu-

Performance of each statisticFigure 3
Performance of each statistic. This figure shows the average performance per each statistic (across all other factor condi-
tions, measured in AUC). All differences are statistically significant at 0.01 with bonferroni correction, except the ones 
between MDAR and MI Adp, between RCW MDAR and RCW MDAR vs Tree and between MI and Simple
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lation model is when assessing performance of such
methods. While datasets simulated by the models "one-
on-one" and "BLOSUM" were relatively easy, the ones by
"cluster" were much harder. Moreover, some statistics
seem to perform relatively much better with data derived
from some methods than from others. Row-and-Column-
Weighting seems to be more effective under the "cluster"
model, while the statistics incorporating multidimen-
sional amino acid representation fare much worse. Row-
and-Column-Weighed Mutual Information is the best
method for data simulated under any of the three models.

Combining different methods
We then proceeded to evaluate the intersections of the
output lists given by each statistic, by means of their aver-
age AUC. From 10 original methods, we got 45 intersec-
tions. As one can see in figure 5, the intersection of output
lists worked as expected: for all statistics except RCW MI,
there was at least one intersection which outperformed it,
even if not including the intersection with RCW MI. This
seems to indicate that filtering out the negatives (specifi-
city) is more important than picking out the positives
(sensitivity), for improvement of performance. It can also
be seen that methods with sub-optimal performance (e.g.,
MDRA vs. Tree) can give a positive contribution when
combined with a sufficiently different statistic.

We then ranked the 55 obtained statistics (10 original +
45 intersections). The outcome of the original statistics

and the highest scoring intersections is shown in figure 6.
We can see that RCW MI is the best statistic overall, closely
followed by 6 statistics resulting from intersections
between RCW MI and other methods. After them, come
intersections including RCW MI Adp, MI Adp and MDRA,
and RCW MI Adp alone. In 11th place comes the surpris-
ing intersection between RCW simple and RCW MDRA vs.
Tree, showing how the intersection between two poor
methods can yield good results.

Error bars, for an α = 0.05 and with Bonferroni correction,
have also been added to the plot. These provide an indica-
tion of the level of randomness affecting our results,
which we consider quite low. In addition to AUC, which
is generally considered to be the best measure of overall
performance, we have also used an alternative measure to
analyze our results. Specifically, we counted the fraction
of positives present in the best-ranked 20 pairs of sites
(recall that there are 20 positives in each dataset). The
average values are plotted as black bars, also on figure 6.
We can see that this measure does not follow AUC closely,
but the correlation is good enough for our purpose (RCW
MI is the best statistic under both measures, and from the
above 11 statistics, 5 will stay in the best 11 group). The
major difference is that, under the fraction of positives in
the best 20 pairs of sites, the best methods are not the
intersections containing RCW MI.

Performance by coevolution simulatorFigure 4
Performance by coevolution simulator. A histogram of average AUC using each of the 10 statistics. The 3 bars represent 
the 3 methods of coevolution used in the simulation.
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The effect of conservation on performance
As shown in the work of [21], most methods are very
dependent on conservation. To assess the effect conserva-
tion had on our results, we looked at true and false posi-
tives, taking into account their rates of evolution. It is
immediately obvious that Mutual Information is biased
towards quickly evolving sites (see Figure 7). One can also
see that MI Adp, the "Simple" measure and Row and Col-
umn Weighting addresses that problem. Bias is hardly
ever a desirable feature in a method, but we think that as
truly coevolving sites are rarely the quickest evolving sites
in an alignment, bias towards slowly evolving sites might
prove much less harmful than the one showed by Mutual
Information.

Conclusion
Driven by the lack of a credible biological benchmarking
system in which to test coevolution detection methods,
we established a realistic and broad platform for bench-
marking 2-way-coevolution at the protein sequence level.
In our system, one can simulate coevolving sequences var-
ying in the model of coevolution used, the strength of that
coevolution, the evolutionary rate and the number of
taxa. The output is then evaluated by comparing the Area
Under the ROC Curve (AUC) or by the ratio between true
positives and total positives.

We have shown how small differences in the benchmark-
ing system can lead to disparate results and how strict and

Performance of all statistics and their interactionsFigure 5
Performance of all statistics and their interactions. A matrix plot of the average AUC for all statistics and their interac-
tions. Each axis has the 10 statistics, and the cells in the matrix represent the intersection of the two statistics represented in 
each axis.
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Overall performanceFigure 6
Overall performance. Histogram of the 11 best statistics plus the best original ones – ordered by decreasing AUC. Bars in 
grey are the average AUC, while the black bars are the average fraction of positives in the Top 20 positions of the output rank 
list. When comparing pairwise differences of AUCs, the best performing method is only statistically significantly better than the 
fifth best, and this one from the eight best.

Fraction of True Positives by rate of evolutionFigure 7
Fraction of True Positives by rate of evolution. Histogram of the fraction of true positives (for a threshold of the Top 20 
hits) by statistic and rate of evolution. For each class of rate of evolution the maximum possible number of true positives (i.e., 
fraction of TP = 1) was 1800.
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consensual one has to be in defining coevolution and the
methods of its evaluation.

We have studied the effect of different rates of evolution
between positions in one alignment, and verified that it is
a major player in uncovering coevolution, and shown
that, in this context, Mutual Information suffers from an
"attraction" to quickly evolving sites that prevents it from
becoming an effective coevolution detection measure.

To counter this effect, we have proposed several measures,
including Row and Column Weighting of output matri-
ces, which proved to be a strong improvement, increasing
the accuracy of Mutual Information (measured by the
Area Under the ROC Curve and in the conditions tested)
by 63%. We have also included the concept of Multi-
dimensional Amino acid Representation, which we
believe has potential to be improved.

Finally, we have also compared the intersection of several
measures, showing that this, in general, leads to an
improvement in accuracy.
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