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Abstract
This paper presents a software library, nicknamed BATS, for some basic sequence analysis tasks.
Namely, local alignments, via approximate string matching, and global alignments, via longest
common subsequence and alignments with affine and concave gap cost functions. Moreover, it also
supports filtering operations to select strings from a set and establish their statistical significance,
via z-score computation. None of the algorithms is new, but although they are generally regarded
as fundamental for sequence analysis, they have not been implemented in a single and consistent
software package, as we do here. Therefore, our main contribution is to fill this gap between
algorithmic theory and practice by providing an extensible and easy to use software library that
includes algorithms for the mentioned string matching and alignment problems. The library consists
of C/C++ library functions as well as Perl library functions. It can be interfaced with Bioperl and
can also be used as a stand-alone system with a GUI. The software is available at http://
www.math.unipa.it/~raffaele/BATS/ under the GNU GPL.

1 Introduction
Computational analysis of biological sequences has
became an extremely rich field of modern science and a
highly interdisciplinary area, where statistical and algo-
rithmic methods play a key role [1,2]. In particular,
sequence alignment tools have been at the hearth of this
field for nearly 50 years and it is commonly accepted that
the initial investigation of the mathematical notion of
alignment and distance is one of the major contributions
of S. Ulam to sequence analysis in molecular biology [3].
Moreover, alignment techniques have a wealth of applica-
tions in other domains, as pointed out for the first time in
[4].

Here we concentrate on alignment problems involving
only two sequences. In general, they can be divided in two
areas: local and global alignments [1]. Local alignment

methods try to find regions of high similarity between two
strings, e.g. BLAST [5], as opposed to global alignment
methods that assess an overall structural similarity
between the two strings, e.g. the Gotoh alignment algo-
rithm [6]. However, at the algorithmic level, both classes
often share the same ideas and techniques, being in most
cases all based on dynamic programming algorithms and
related speed-ups [7]. More in detail, we have implemen-
tations for (see also Fig. 1 for the corresponding function
in the GUI):

(a) Approximate string matching with k mismatches. That
is, given a pattern and text string and an integer k, we are
interested in finding all occurrences of the pattern in the
text with at most k mismatching characters per occurrence.
We provide an implementation of an algorithm given in
[8]. It is a simplification of the first efficient algorithm
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obtained for this problem, due to Landau and Vishkin [9].
The asymptotically fastest known algorithm to date is due
to Amir, Lewenstein and Porat [10]. Formalization of the
problem, as well as description of the algorithm and
library functions, both in C/C++ and Perl, is given in sec-
tion 2.

(b) Approximate string matching with k differences. That
is, given a pattern and text string and an integer k, we are
interested in finding all occurrences of the pattern in the
text with at most k differences where, for each occurrence
a "difference" is a character to be inserted, deleted or sub-
stituted in the pattern. We provide an implementation of
the algorithm by Landau and Vishkin [11], although the
asymptotically most efficient one, to date, has been
recently obtained by Cole and Hariharan [12]. Formaliza-
tion of the problem, as well as description of the algo-
rithm and library functions, both in C/C++ and Perl, is
given in section 3.

(c) The longest common subsequence from fragments, a
generalization of the well known longest common subse-
quence problem [1], considered by Baker and Giancarlo
[13]. Formalization of the problem, as well as description
of the algorithm and library functions, both in C/C++ and
Perl, is given in section 4.

(d) Edit distance with concave and affine gap penalties. It
is the well known generalization of the edit distance
between two strings introduced by M.S. Waterman [14],
i.e., with the use of concave gap costs. We provide an
implementation of the algorithm obtained by Galil and
Giancarlo [15] (GG algorithm for short). An analogous
algorithm was obtained independently by Miller and
Myers [16]. We also point out that the asymptotically
most efficient algorithm, to date, is still the one given by
Klawe and Kleitman [17], although it seems to be mainly
of theoretic interest. It is also worth mentioning that the
GG algorithm naturally specializes to deal with affine gap
costs. Formalization of the problem, as well as description
of the algorithm and library functions, both in C/C++ and
Perl, is given in section 5.

(e) Filtering, statistical significance computation and
organism model generation. The first two functions allow
to select a subset of strings from a given set and to assess
its statistical significance via z-score computation [18].
The third function is required in order to give to the first
two, a probabilistic model of the input data. While the fil-
tering techniques are quite standard, the implementation
of the z-score computation is a specialization of a non-
trivial implementation by Sinha and Tompa, used for
motif discovery [19]. Our code, as the one by Sinha and
Tompa, works only for DNA sequences. The function
allowing for the generation of a user-specified model
organism gives, in a suitable format, all probabilistic
information needed by the z-score function. Description
of this part of the system, as well as presentation of the
corresponding library functions, both in C/C++ and Perl,
is given in section 6.

As it is self-evident from the description just given, this
software library is not intended as a generic programming
environment, like Leda for combinatorial and geometric
computing [20]. An initial attempt, in that direction, for
string algorithms is described in [21]. The software pre-
sented here is more tailored at specific alignment prob-
lems. We also point out that most of the algorithms
implemented in BATS are based on suffix trees [22]. Here
we use the algorithm by Ukkonen [23] in the Strmat
library [24]. It is not particularly memory-efficient (17
bytes/character) and that may be problematic for genome-
wide applications of the corresponding algorithms. We
finally point out that the entire library can be used as a
stand-alone system with a GUI and it can be interfaced
with Bioperl. A detailed user manual, together with instal-
lation procedures, file formats etc., is given at the supple-
mentary web site [25].

a snapshot of the GUIFigure 1
a snapshot of the GUI. An overview of the GUI of BATS. 
The top bar has a specific button for each of the algorithms 
and functions implemented. Then, each function has its own 
parameter selection interface. The Edit Distance function 
interface is shown here.
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2 Approximate string matching with k 
mismatches
Given a text string text = t[1, n], a pattern string pattern =
p[1, m] and an integer k, k ≤ m ≤ n, we are interested in
finding all occurrences of the pattern in the text with at
most k mismatches, i.e. with at most k locations in which
the pattern and a text substring have different symbols.

Let Prefix(i, j) be a function that returns the length of the
longest common prefix between p[i, m] and t[j, n]. It can
be computed in O(1) time, after the following preprocess-
ing step: (A) build the suffix tree T [22] of the strings p[1,
m]$t[1, n], where $ is a delimiter not appearing anywhere
else in the two strings; (B) preprocess T so that Lowest
Common Ancestor (LCA for short) queries can be
answered in constant time [26]. The preprocessing step
takes O(n + m) time and it is well known that the compu-
tation of Prefix(i, j) reduces to the computation of one
LCA query on the leaves of T [8].

Once that the preprocessing step is completed, we can
find the first (leftmost) mismatch between p[1, m] and t[j,
j + m - 1] in O(1) time by use of Prefix(1, j). If we keep
track of where this mismatch occurs, say

1: Algorithm SM

2: for j = 1 to n do

3: pt ← j; v ← 1; num_mismatch ← 0;

4: **t[j, j + m - 1] is aligned with p[1, m] and no mis-
match has been found**

5: while v ≤ m - 1 and num_mismatch ≤ k do

6:

7: **find leftmost mismatch between t[pt, pt + m - 1]
and p[v, m]**

8: � ← Prefix(v, pt)

9: if v + � ≤ m then

10: num_mismatch ← num_mismatch + 1

11: end if

12: pt ← pt + � + 1; v ← v + � + 1;

13: end while

14: if num_mismatch ≤ k then

15: found match

16: end if

17: end for

at position l of pattern, we can locate the second mis-
match, in O(1) time, by finding the leftmost mismatch
between p[l + 1, m] and t[j + l - 1, j + m - 1]. In general, the
q-th mismatch between p[1, m] and t[j, j + m - 1] can be
found in O(1) time by knowing the location of the (q - 1)-
th mismatch. Algorithm SM gives the needed pseudo-
code. We have:

Theorem 2.1 [8,9]Given a pattern p and a text t of length m
and n respectively, Algorithm SM finds all occurrences of p in t
with at most k mismatches in O(m + n + nk) time, including
the preprocessing step.

2.1 The C/C++ library functions
The function below returns all occurrences, with at most k
mismatches, of a pattern within a text.

Synopsis

#include "k_mismatch.h"

OCCURRENCES

k_mismatch(char*text, char*pattern, int k);

Arguments:

• text: points to a text string;

• pattern: points to a pattern string;

• k: is an integer giving the maximum number of allowed
mismatches.

Return Values: k_mismatch returns a pointer to
OCCURRENCES_STRUCT, defined as:

typedef struct occurrences

{

int start, end;

int errors;

char*text;

char*pattern;
Page 3 of 16
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struct occurrences*next;

} OCCURRENCES_STRUCT, *OCCURRENCES;

where:

• start: is the start position of this occurrence in the text
string;

• end: is the end position of this occurrence in the text
string;

• errors: the number of mismatches of this occurrence;

• text: is a pointer to the aligned substring corresponding
to the occurrence found;

• pattern: is a pointer to the aligned pattern string.

2.2 The PERL library functions
The function below returns all occurrences, with at most k
mismatches, of a pattern within a text.

Synopsis

use BSAT::K_Mismatch;

K_Mismatch Text Pattern K

Arguments:

• Text: is a scalar containing the text string;

• Pattern: is a scalar containing the pattern string;

• K: is a scalar giving the maximum number of allowed
mismatches.

Return values: The function returns an array of occur-
rences. Each occurrence consists of a hash:

my %occurrence = (

errors => 0,

start => 0,

end => 0,

text => "",

pattern => "");

where the above fields are as in the
OCCURRENCES_STRUCT defined earlier.

3 Approximate string matching with k 
differences
In this section we consider a more general problem of
approximate string matching by extending the set of
allowed differences between strings. Letting text, pattern
and k be as in section 2, we are interested in finding all
occurrences of pattern in text with at most k differences.
The allowed differences are:

(a) A symbol of the pattern corresponds to a different
symbol of the text, i.e., a mismatch.

(b) A symbol of the pattern corresponds to no symbol in
the text.

(c) A symbol of the text corresponds to no symbol in the
pattern.

Let A be an (m + 1) × (n + 1) dynamic programming
matrix and consider the following recurrence:

A[0, j] = 0, 0 ≤ j <n. (1)

A[i, 0] = i, 0 ≤ i <m. (2)

A[i, j] = min(A[i - 1, j] + 1, A[i, j - 1] + 1, if p[i] = t[j] then 
A[i - 1, j - 1] else A[i - 1, j - 1] + 1). (3)

Matrix A can be computed row by row, or column by col-
umn, in O(nm) time. Moreover, it can be easily shown
that A[i, j] is the minimal edit distance between p[1, i] and
a substring of text ending at position j. Thus, it follows that
there is an occurrence of the pattern in the text ending at
position j of the text if and only if A[m, j] ≤ k. The compu-
tation of A can be substantially sped-up by observing that,
for any i and j, either A[i + 1, j + 1] = A[i, j] or A[i + 1, j +
1] = A[i, j] + 1. That is, the elements along any diagonal of
A form a non-decreasing sequence of integers. Thus, the
computation of A can be performed by finding, for all
diagonals, the rows in which A[i + 1, j + 1] = A[i, j] + 1 ≤
k. Such an observation was exploited by Ukkonen [27] in
order to obtain a space efficient algorithm for the compu-
tation of the edit distance between two strings. Landau
and Vishkin [11] cleverly extended the method by Ukko-
nen to obtain an efficient algorithm that handles the more
general problem of string matching with k differences. We
present their algorithm here, although the asymptotically
most efficient one, to date, has been recently obtained by
Cole and Hariharan [12].

Let Ld,e denote the largest row i such that A[i, j] = e and j -
i = d. The definition of Ld, e implies that e is the minimal
number of differences between p[1, Ld,e] and the sub-
strings of the text ending at t[Ld,e + d], with p[Ld,e + 1] ≠
t[Ld,e + d + 1]. In order to solve the k differences problem,
Page 4 of 16
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we need to compute the values of Ld,e that satisfy e ≤ k.
Assuming that Ld+1,e-1, Ld-1,e-1 and Ld,e-1 have been correctly
computed, Ld,e is computed as follows. Let row =
max(Ld+1,e-1 + 1, Ld-1,e-1, Ld,e-1 + 1) and let � be the largest
integer such that p[row + 1, row + �] = t[d + row + 1, d + row
+ �]. Then, Ld,e = row + �. The proof of correctness of such
a computation is a simple exercise, left to the reader.
Moreover, if one makes use of the preprocessing algo-
rithms presented in section 2, Ld,e can be computed in
O(1) time as follows:

Ld,e = row + Prefix(row + 1, row + d + 1). Algorithm SD gives
the needed pseudo-code. We have:

Theorem 3.1 [11]Given a pattern p and a text t, of length m
and n, respectively, Algorithm SD finds all occurrences of p in
t with at most k differences in O(m + n + nk) time, including
the preprocessing step.

3.1 The C/C++ library functions
The function below returns all occurrences of a pattern
within a text with at most k differences.

Synopsis

#include " k_difference.h"

OCCURRENCES

k_difference (char*text, char*pattern, intk);

Arguments: As in function k_mismatch

Return Values: As in function k_mismatch

1: Algorithm SD

2: **Initial Conditions Start Here**

3: for d := 0 to n do

4: L[d, -1] ← -1

5: end for

6: for d := -(k + 1) to -1 do

7: L[d, |d| - 1] ← |d| - 1

8: L[d, |d| - 2] ← |d| - 2

9: end for

10: for e := -1 to k do

11: L[n + 1, e] ← -1

12: end for

13: **Initial Conditions End Here**

14: for e := 0 to k do

15: for d := -e to n do

16: row ← max(L[d, e - 1] + 1, L[d - 1, e - 1], L[d + 1, e
- 1] + 1

17: row ← min(row, m)

18: if row <m and row + d <n then

19: row ← row + Prefix(row + 1, row + d + 1)

20: end if

21: L[d, e] ← row

22: if L[d, e] = m and d + m ≤ n then

23: **Occurrence Found**

24: end if

25: end for

26: end for

3.2 The PERL library functions
The function below returns all occurrences of a pattern
within a text with at most k differences.

Synopsis

use BSAT::K_Difference;

K_Difference Text Pattern K

Arguments: As in function K_Mismatch

Return values: As in function K_Mismatch

4 Longest common subsequence from 
fragments
In this section we consider the problem of identifying a
longest common subsequence (LCS for short) of two
strings X and Y, using a set M of matching fragments. That
is, strings of a given length that appear in both X and Y.
We start by reviewing some basic notions about LCS com-
putation and relate them to approximate string matching,
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discussed in sections 2 and 3. Then, we outline the algo-
rithm presented in [13].

4.1 LCS from fragments and edit graphs
It is well known that finding the LCS of X and Y is equiv-
alent to finding the Levenshtein edit distance between the
two strings [4], where the "edit operations" are insertion
and deletion of a single character. Those edit operations
naturally correspond to the differences of type (b) and (c)
introduced in section 3 for approximate string matching.
Although there is analogy between approximate string
matching and LCS computation, the former can be
regarded as a local alignment method as opposed to the
latter, that is a global alignment method [1]. Following
Myers [28], we phrase the LCS problem as the computa-
tion of a shortest path in the edit graph for X and Y,
defined as follows. It is a directed grid graph (see Fig. 2)
with vertices (i, j), where 0 ≤ i ≤ n and 0 ≤ j ≤ m, |X| = n and
|Y| = m. We refer to the vertices also as points. There is a ver-
tical edge from each non-bottom point to its neighbor
below. There is a horizontal edge from each non-right-
most point to its right neighbor. Finally, if X[i] = Y[j], there
is a diagonal edge from (i - 1, j - 1) to (i, j). Assume that
each non-diagonal edge has weight 1 and the remaining
edges weight 0. Then, the Levenshtein edit distance is
given by the minimum cost of any path from (0, 0) to (n,
m). We assume the reader to be familiar with the notion
of edit script corresponding to the min-cost path and how
to recover an LCS from an edit script [28-30]. Our LCS
from Fragments problem also corresponds naturally to an
edit graph. The vertices and the horizontal and vertical
edges are as before, but the diagonal edges correspond to
a given set of fragments. Each fragment, formally
described as a triple (i, j, k), represents a sequence of diag-
onal edges from (i - j - 1) (the start point) to (i + k - 1, j +
k - 1) (the end point). For a fragment f, the start and end
points of f are denoted by start(f) and end(f), respectively.
In the example of Figure 3, the fragments are the
sequences of at least 2 diagonal edges of Fig. 2. The LCS
from Fragments problem is equivalent to finding a mini-
mum-cost path in the edit graph from (0, 0) to (n, m),
where each diagonal edge has weight 0 and each non-
diagonal edge has weight 1. The problem has an obvious
dynamic programming solution since the graph naturally
corresponds to an nxm dynamic programming matrix.
However, it also falls into the more efficient algorithmic
paradigm of Sparse Dynamic Programming [31,32], as
discussed in [13] and outlined next.

For a point p, define x(p) and y(p) to be the x- and y- coor-
dinates of p, respectively. We also refer to x(p) as the row
of p and y(p) as the column of p. Define the diagonal
number of f to be d(f) = y(start(f)) - x(start(f)).

an edit graph with fragmentsFigure 3
an edit graph with fragments. An LCS from Fragments 
edit graph for the same strings as in Figure 2, where the frag-
ments are the sequences of at least two diagonal edges of 
Figure 2. The bold path from (0, 0) to (6, 7) corresponds to a 
minimum-cost path under the Levenshtein edit distance.
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We say a fragment f' is left of start(f) if some point of f'
besides start(f') is to the left of start(f) on a horizontal line
through start(f), or start(f) lies on f' and x(start(f'))
<x(start(f)). (In the latter case, f and f' are in the same diag-
onal and overlap.) A fragment f' is above start(f) if some
point of f' besides start(f') is strictly above start(f) on a ver-
tical line through start(f).

Define visl(f) to be the first fragment to the left of start(f)
if such exists, and undefined otherwise. Define visa(f) to
be the first fragment above start(f) if such exists, and unde-
fined otherwise.

We say that fragment f precedes fragment f' if x(end(f))
<x(start(f')) and y(end(f)) <y(start(f')), i.e. if the end point
of f is strictly inside the rectangle with opposite corners (0,
0) and start(f').

Suppose that fragment f precedes fragment f'. The shortest
path from end(f) to start(f') with no diagonal edges has
cost x(start(f')) - x(end(f)) + y(start(f')) - y(end(f)), and the
minimum cost of any path from (0, 0) to start(f') through
f is that value plus mincost0(f). It will be helpful to separate
out the part of this cost that depends on f by the definition
Z(f) = mincost0(f) - x(end(f)) - y(end(f)). Note that Z(f) ≤ 0
since mincost0(f) ≤ x(start(f)) + y(start(f)). The following
lemma states that we can compute LCS from fragments by
considering only end-points of some fragments rather
than all points in the dynamic programming matrix.
Moreover, it also gives the appropriate recurrence rela-
tions that we need to compute.

Lemma 4.1 [13]For any fragment f and any point p on f,
mincost0(p) = mincost0(start(f)).

Moreover, mincost0(f) is the minimum of x(start(f)) +
y(start(f)) and any of cp, cl, and ca that are defined according
to the following:

1. If at least one fragment precedes f, cp = x(start(f)) +
y(start(f)) + min{Z(f'): f' precedes f}.

2. If visl(f) is defined, cl = mincost0(visl(f))+d(f) - d(visl(f));

3. If visa(f) is defined, ca = mincost0(visa(f)) + d(visa(f)) -
d(f);

4.2 Outline of the algorithm
Based on Lemma 4.1, we now present the main steps of
the algorithm in [13] computing the required optimal
path, given a list M of fragments (represented as triples of
integers). It uses a sweepline approach where successive
rows are processed, and within rows, points are processed
from left to right. Lexicographic sorting of (x, y)-values is
needed. The algorithm consists of two main phases, one

in which it computes visibility information, i.e., visl(f)
and visa(f) for each fragment f, and the other in which it
computes Recurrences (1)–(3) in Lemma 4.1.

Not all the rows and columns need contain a start point
or end point, and we generally wish to skip empty rows
and columns for efficiency. For any x (y, resp.), let C(x)
(R(y), resp.) be the i for which x is in the i-th non-empty
column (row, resp.). These values can be calculated in the
same time bounds as the lexicographic sorting. From now
on, we assume that the algorithm processes only non-
empty rows and columns.

For the lexicographic sorting and both phases, we assume
the existence of a data structure of type D that stores inte-
gers j in some range [0, u] and supports the following
operations: (1) insert, (2) delete, (3) member, (4) min,
(5) successor: given j, the next larger value than j in D, (6)
max: given j, find the max value less than j in D. In our
toolkit, D is implemented via balanced trees [33]. There-
fore, if d elements are stored in it, each operation takes
O(log d) time. More complex schemes are proposed and
analyzed in [13], yielding better asymptotic performance.
With the mentioned data structures, lexicographic sorting
of (x, y)-values can be done in O(d log d) time. In our case
u ≤ n + m and d ≤ |M|.

• Visibility Computation. We now briefly outline how to
compute visl(f) and visa(f) for each fragment f via a
sweepline algorithm. We describe the computation of
visl(f); that for visa(f) is similar. For visl(f), the sweepline
algorithm sweeps along successive rows. Assume that we
have reached row i. We keep all fragments crossing row i
sorted by diagonal number in a data structure V. For each
fragment f such that x(start(f)) = i, we record the fragment
f' to the left of start(f) in the sorted list of fragments; in this
case, visl(f) = f'. Then, for each fragment f with x(start(f)) =

i, we insert f into V. Finally, we remove fragments  such

that y(end( )) = i. If the data structure V is implemented

as a balanced search tree, the total time for this computa-
tion is O(M log M).

• The Main Algorithm. Again, we use a sweepline
approach of processing successive rows. It follows the
same paradigm as the Hunt-Szymanski LCS algorithm
[34] and the computation of the RNA secondary structure
(with linear cost functions) [31].

We use another data structure B of type D, but this time B
stores column numbers (and a fragment associated with
each one). The values stored in B will represent the col-
umns at which the minimum value of Z(f) decreases com-

f̂

f̂
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pared to any columns to the left, i.e. the columns
containing an end point of a fragment f for which Z(f) is
smaller than Z(f') for any f' whose end point has already
been processed and which is in a column to the left.
Notice that, once we fix a row, D gives a partition of that
row in terms of columns. Within a row, first process any
start points in the row from left to right. For each start
point of a fragment, compute mincost0 using Lemma 4.1.
Note that when the start point of a fragment f is com-
puted, mincost0 has already been computed for each frag-
ment that precedes f and each fragment that is visa(f) or
visl(f). To find the minimum value of Z(f') over all prede-
cessors f' of f, the data structure B is used. The minimum
relevant value for Z(f') is obtained from B by using the
max operation to find the max j <y(start(f)) in B; the frag-
ment f' associated with that j is one for which Z(f') is the
minimum (based on endpoints processed so far) over all
columns to the left of the column containing start(f), and
in fact this value of Z(f') is the

1: Algorithm FLCS

2: For each fragment f, compute visl(f) and visa(f)

3: for i = R(0) to R(n) do

4: for each fragment f s.t. x(start(f)) = i do

5: f' ← max on B with key y(start(f))

6: if f' is defined then

7: compute cp

8: end if

9: if visl(f) is defined then

10: compute cl

11: end if

12: if visa(f) is defined then

13: compute ca

14: end if

15: compute mincost(f)

16: end for

17: for each fragment f s.t. x(start(f)) = i do

18: f' ← max on B with key y(end(f)) + 1

19: if f' is not defined or Z(f) <Z(f') then

20: INSERT f into B with key y(end(f))

21: end if

22: for each fragment f' := SUCCESSOR(f) in B such
that Z(f') ≤ Z(f) do

23: DELETE(f') from B

24: end for

25: end for

26: end for

minimum value over all predecessors of f.

After any start points for a row have been processed, proc-
ess the end points. When an end point of a fragment f is
processed, B is updated as necessary if Z(f) represents a
new minimum value at the column y(end(f)); successor
and deletion operations may be needed to find and
remove any values that have been superseded by the new
minimum value. Algorithm FLCS gives the pseudo-code
of the method just outlined, with the visibility computa-
tion omitted for conciseness. In conclusion, we have:

Theorem 4.2 [13]Suppose X [1 : n] and Y [1 : m] are strings,
and a set M of fragments relating substrings of X and Y is given.
One can compute the LCS from Fragments in O(|M|log|M|)
time and O(|M|) space using standard balanced search tree
schemes.

4.3 The C/C++ library functions
The function below computes the longest common subse-
quence from fragments and returns the corresponding
alignment.

Synopsis

#include "flcs.h"

ALIGNMENTS

flcs (char*X, char*Y, FRAGSETM);

Arguments:

• X: points to a string;

• Y: points to a string;
Page 8 of 16
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• M: point to a FRAGSET_STRUCT, that represents a set of
fragments.

Return Values: A pointer to ALIGNMENTS_STRUCT,
which is defined as:

typedef struct alignments

{

double distance;

char*X;

char*Y;

struct alignments*next;

} ALIGNMENTS_STRUCT, *ALIGNMENTS;

where:

• distance: is the Levenshtein Distance between strings
Xand Y, computed using only fragments;

• X: is a pointer to the aligned string X, i.e., the string with
appropriate spacers inserted;

• Y: is a pointer to the aligned string Ywith appropriate
spacers inserted.

One can create a set of fragments from all the matching k-
tuples between Xand Y, using the function:

FRAGSET

fragset_create_ktuples (char*X, char*Y, intk);

where:

• X: points to string;

• Y: points to a string;

• k: is the fragment length.

Auxiliary functions destroying, creating or incrementally
updating a set of fragments are the following:

void

fragset_destroy(FRAGSET fragset);

FRAGSET

fragset_create(int*max_cardinality);

int

fragset_frag_add(FRAGSET fragset, int i, int j, int length);

where

• fragset:points to FRAGSET_STRUCT;

• i: fragment starting position in the first string X;

• j: fragment starting position in the second string Y;

• length: fragment length.

4.4 The PERL library functions
The function FLCS computes the longest common subse-
quence from fragments. It returns the corresponding
alignment.

Synopsis

use BSAT::FLCS;

FLCS X Y Frags

Arguments:

• X: is a scalar containing string X.

• Y: is a scalar containing string Y.

• Frags: is a hash reference (see below).

Return values: FLCS returns a hash corresponding to the
alignment between X and Y:

my %alignment = (

distance => 0,

X => "",

Y => "");

where:

• distance: is a scalar containing the Levenshtein Distance
between strings Xand Y, computed using only fragments;

• X: is a scalar containing the alignment string X;

• Y: is a scalar containing the alignment string Y.
Page 9 of 16
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The hash reference Frags is defined as:

my %Frags = (

K => 0,

Set => ());

where:

• K: is a scalar giving the fragment length;

• Set: is an array of three elements (i, j, length) specifying
a fragment.

5 Edit distance with gaps
5.1 The dynamic programming recurrences
We refer to the edit operations of substitution of one sym-
bol for another (point mutation), deletion of a single
symbol, and insertion of a single symbol as basic opera-
tions. They are related in a natural way to the differences
introduced in section 3. Let a gap be a consecutive set of
deleted symbols in one string or inserted symbols in the
other string. With the basic set of operations, the cost of a
gap is the sum of the costs of the individual insertions or
deletions which compose it. Therefore, a gap is considered
as a sequence of homogeneous elementary events (inser-
tion or deletion) rather than as an elementary event itself.
But, both theoretic and experimental considerations
[1,14,35], suggest that the cost w(i, j) of a generic gap X[i,
j] must be of the form

w(i, j) = f1(X[i]) + f2(X[j]) + g(j - i) (4)

where f1 and f2 are the costs of breaking the string at the
endpoints of the gap and g is a function that increases
with the gap length.

In molecular biology, the most likely choices for g are aff-
ine or concave functions of the gap lengths, e.g., g(�) = c1
+ c2� or g(�) = c1 + c2 log �, where c1 and c2 are constants.
With such a choice of g, the cost of a long gap is less than
or equal to the sums of the costs of any partition of the gap
into smaller gaps. That is, each gap is treated as a unit.
Such constraint on g induces a constraint on the function
w. Indeed, w must satisfy the following inequality, known
as concave Monge condition [7]:

w(a, c) + w(b, d) ≥ w(b, c) + w(a, d) for all a <b and c <d.
(5)

an extremely useful inequality that yields speed-ups in
Dynamic Programming [7].

The gap sequence alignment problem can be solved by
computing the following dynamic programming equa-
tion (w' is a cost function analogous to w):

D[i, j] = min{D[i - 1, j - 1] + sub(X[i], Y[j]), E[i, j], F[i, j]}
(6)

where

sub is a symbol substitution cost matrix and the initial
conditions of recurrence (6) are D[i, 0] = w'(0, i), 1 ≤ i ≤ m
and D[0, j] = w(0, j), 1 ≤ j ≤ n.

We observe that the computation of recurrence (6) con-
sists of n + m interleaved subproblems that have the fol-
lowing general form: Compute

D[0] is given and for every k = 1,..., n, D [k] is easily com-
puted from E[k]. We now concentrate on a general algo-
rithm computing (9).

5.2 The GG algorithm
From now on, unless otherwise specified, we assume that
w satisfies the concave Monge condition (5). An impor-
tant notion related to concave Monge condition is con-
cave total monotonicity of an s × p matrix A. A is concave
totally monotone if and only if

A[a, c] ≤ A[b, c] ⇒ A[a, d] ≤ A[b, d]. (10)

for all a <b and c <d.

It is easy to check that if w is seen as a two-dimensional
matrix, the concave Monge condition implies concave
total monotonicity of w. Notice that the converse is not
true. Total monotonicity and Monge condition of a matrix
A are relevant to the design of algorithms because of the
following observations. Let rj denote the row index such
that A[rj, j] is the minimum value in column j. Concave
total monotonicity implies that the minimum row indices
are nonincreasing, i.e., r1 ≥ r2 ≥ ... ≥ rm. We say that an ele-
ment A[i, j] is dead if i ≠ = rj (i.e., A[i, j] is not the minimum
of column j). A submatrix of A is dead if all of its elements
are dead.

Let B[i, j] = D[i] + w(i, j), for 0 ≤ i ≤ j ≤ n. We say that B[i,
j] is available if D[i] is known and therefore B[i, j] can be

E i j D i k w k j
k j

, min , , ,[ ] = [ ] + ( ){ }
≤ ≤ −0 1

(7)

F i j D i j w l i
l i

, min , , ,[ ] = [ ] + ′( ){ }
≤ ≤ −0 1

(8)

E j D k w k j j n
k j

[ ] = [ ] + ( ){ } =
≤ ≤ −
min , , , , ,

0 1
1 (9)
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computed in constant time. That is, B[i, j] is available only
when the column minima for columns 1, 2,..., i have been
found. We say that B is on-line, since its entries become
available as the computation proceeds.

The computation of recurrence (9) reduces to the identifi-
cation of the column minima in an on-line upper triangu-
lar matrix B. One can easily show that when w satisfies the
concave Monge condition, B is totally monotone. We
make use of this fact to obtain an efficient algorithm.

The algorithm outlined here finds column minima one at
a time and processes available entries so that it keeps only
possible candidates for future column minima. In the
concave case, we use a stack to maintain the candidates.
The algorithm can be sketched as follows (proof of cor-
rectness can be found in [15])

For each j, 2 ≤ j ≤ n, we find the minimum at column j as
follows. Assume that (i1, h1),..., (ik, hk) are on the stack
((i1, h1) is at the top of the stack). Initially, (0, n) is on the
stack. The invariant on the stack elements is that in sub-
matrix B[0 : j - 2, j : n] row ir, for 1 ≤ r ≤ k, is the best (gives
the minimum) in the column interval [hr-1 + 1, hr] (assum-
ingh h0 + 1 = j). By the concave total monotonicity of B,
i1,..., ik are nonincreasing. Thus the minimum at column j
is the minimum of B[i1, j] and B[j - 1, j].

Now we update the stack with row j - 1 as follows.

(GG1) If B[i1, j] ≤ B[j - 1, j], row j - 1 is dead by concave
total monotonicity. If h1 = j, we pop the top element
because it will not be useful.

(GG2) If B[i1, j] > B[j - 1, j], we compare row j - 1 with row
ir at hr (i.e., B[ir, hr] vs. B[j - 1, hr]), for r = 1, 2,..., until row
ir is better than row j - 1 at hr. If row j - 1 is better than row
ir at hr, row ir cannot give the minimum for any column
because row j - 1 is better than row ir for column l ≤ hr and
row ir+1 is better than row ir for column l > hr. We pop the
element (ir, hr) from the stack and continue to compare
row j - 1 with row ir+1. If row ir is better than row j - 1 at hr,
we need to find the border of the two rows j - 1 and ir,
which is the largest h <hr such that row j - 1 is better than
row ir for column l ≤ h; i.e., finding the zero z of f(x) = B[j
- 1, x] - B[ir, x] = w(j - 1, x) - w(ir, x) + (D[j - 1] - D[ir]), then
h = NzQ. If h ≥ j +1, we push (j - 1, h) into the stack.

In the pseudo-code of Algorithm GG, let I(top) and H(top)
denote (i1, h1). Moreover, let CLOSEST(j - 1, I(top)) be a
function that returns the zero of f(x) (defined in step
GG2) closest to j - 1. Notice that, using the monotonicity
conditions on w, CLOSEST(j - 1, I(top)) can be computed
in O(log n) time. Moreover, we say that f satisfies the clos-
est zero property if such a zero can be computed in constant

time. We also notice that when w is a linear function, f
obviously satisfies the closet zero property. Moreover, for
linear functions, lines 9–20 of Algorithm GG become use-
less since only one element can be on the stack: the win-
ner (the minimum) of the comparison on line 5 of the
algorithm. We have:

Theorem 5.1 Recurrence (9) can be computed in O(n log n)
time when w satisfies the concave Monge conditions. The time
reduces to O(n) when the closet zero property is satisfied or w
is linear. Therefore, given two strings X and Y, their edit dis-
tance with gaps can be computed in time O(nm log max(n,
m)) time, when both w and w' satisfy the concave Monge con-
ditions and O(nm) time when both functions satisfy the closest
zero property or are affine gap costs.

Two remarks are in order regarding the implementation of
the GG algorithm provided here:

1: Algorithm GG

2: push (0, n) on S

3: for j := 2 to n do

4: � ← I(top)

5: if B[j - 1, j] ≥ B[�, j] then

6: min is B[�, j]

7: else

8: min is B[j - 1, j]

9: while S ≠ ∅ and B[j - 1, j] ≤ B[I(top); H(top)] do

10: pop

11: end while

12: if S = ∅ then

13: push (j - 1, n)

14: else

15: h ← CLOSEST(j - 1, I(top))

16: push (j - 1, h)

17: end if

18: end if
Page 11 of 16
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19: if H(top) = j then

20: pop

21: end if

22: end for

(a) It takes in input a character substitution matrix. Such
a matrix could be one of the well known PAM [36] or
BLOSUM [37,38] matrices. However, those matrices have
been designed for maximization problems, while we have
stated our alignment problem as a minimization prob-
lem. Therefore, in order to use those matrices, we need to
change the sign of each entry, i.e., take its dual.

(b) It takes in input two default gap cost functions, one
affine and the other concave: g(�) = c1 + c2� and g(�) = c1
+ c2 log �, where c1 and c2 are constants. In this case, the
closet zero property holds and the program uses this con-
dition to avoid the binary search. However, the user can
also specify a concave cost function by simply providing a
pointer to the excutable computing it. In this case, the
binary search is used.

5.3 The C/C++ library functions
The function below computes the edit distance between
two strings, using convex or affine gap costs. It returns the
corresponding alignment.

Synopsis

#include "edit_distance_gaps.h"

ALIGNMENTS

edit_distance_gaps(char*X, char*Y, WEIGHT Xw,
WEIGHT Yw,, MATRIX substitution);

Arguments:

• X: points to a string;

• Y: points to a string;

• Xw: is a pointer to a WEIGHT_STRUCT;

• Yw: is a pointer to a WEIGHT_STRUCT;

• substitution: is a pointer to MATRIX_STRUCT, a data
structure (detailed below) defining an upper triangular
substitution cost matrix.

WEIGHT_STRUCT defines a generic cost function for
gaps, as follows:

typedef struct weight

{

int type;

double Wa, Wg, base;

double (*w)(int l, int k);

} WEIGHT_STRUCT, *WEIGHT;

The type is a mendatory field that takes two val-
ues:F_AFFINE and F_CONCAVE. In both cases, the total
of gap opening and closing costs, i.e., Wg, and the gap
extension cost, i.e., Wa, need also be specified. Then, the
affine function is Wa + Wg�, for a gap of length �. For the
concave cost function, we can use the default Wa + Wglog-

base(�), where the base of the logarithm must also be spec-
ified. One can also use a user-defined concave cost
function w by specifying a pointer to a function defined
as:

double

weight_function(int l, int k);

MATRIX_STRUCT defines a generic cost substitution
matrix, as follows:

typedef struct matrix

{

char*alphabet;

int size

double**matrix

} MATRIX_STRUCT, *MATRIX;

where alphabet is a pointer to the alphabet array (case
insensitive) of cardinality size. The last field matrixis a
pointer an upper triangular symbol substitution cost
matrix. In case one wants to use the default matrix, i.e.,
match values 0 and mismatch 1, it suffices to set filed size
equal to zero.

Return Values: A pointer to ALIGNMENTS_STRUCT,
which is defined as in section 4.3, except that distance now
refers to the edit distance with gaps.
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5.4 The Perl library functions
The Edit_Distance_Gap computes the edit distance with
gaps between two strings.

Synopsis

use BSAT::Edit_Distance_Gaps;

Edit_Distance_Gaps X Y Xw Yw Substitution

Arguments:

• X: is a scalar containing string X;

• Y: is a scalar containing string Y;

• Xw: is a hash reference defined below;

• Yw: is a hash reference defined below;

• Yw: is a list reference containing the

• Substitution: is a list reference containing an upper trian-
gular symbol substitution cost matrix. If undefined, the
default values are used, as in section 5.3;

• Alphabet: is a list reference containing the characters of
alphabet (case insensitive). If undefined, the default val-
ues are used, as in section 5.3.

Xw is defined as (Yw is analogous):

my %Xw = (

Type => "",

Wa => 0,

Wg => 0,

Base => 0,

w => \&custom_fuction);

where the fields are as in the specification of the cost func-
tion in section 5.3.

Return values: Edit_Distance_Gaps returns an hash cor-
responding to the computed alignment and it is defined
as in section 4.4, except the distance is now the value of
the edit distance with gaps:

my %alignment = (

distance => 0,

X => "",

Y => "");

6 Filtering, statistical scores and model organism 
generation
In this section we outline the filtering and statistical func-
tions present in the system, starting with the filter. Let
O1,...,Os be the output of algorithm SM on the pattern
strings p1,...,ps and text strings t1,...,ts, respectively. We
assume that the algorithm has been used with the same
value of k in all s instances. The procedure takes in input
the sets Oi and ti, 1 ≤ i ≤ s, and a threshold parameter th. It
returns a set W consisting of all strings in Oi that appear in
at least th of the text strings. Since each Oi consists of the
occurrences of a pattern pi in ti, with mismatches, W corre-
sponds to a set of strings representing common occur-
rences of all patterns in the text strings, i.e., it is a
consensus set. The algorithmic details yielding an efficient
implementation of the filtering operation are straightfor-
ward and therefore omitted.

We now turn to the z-score. The assessment of the statisti-
cal significance of the occurrences of a set of strings W in
a set of text strings t1,...,ts is a well established procedure
for analysis of biological sequences, in particular via z-
score functions [18]. Intuitively, the value of the z-score
for a set of strings W gives an indication of how relevant
are the occurrences of the strings in W in the text strings
t1,...,ts, with respect to "a random event" as characterized
by a background model. We limit ourselves to give formal
definitions and for the case in which W contains only one
string and s = 1. For the generalization to the case in which
W contains more than one string and the rather involved
algorithmic details, the reader is referred to [19].

Let p be a string and let X be a set of random strings, gen-
erated according to some " background probabilistic
model", usually a Markov Source. Let Xp be the random
variable indicating the number of occurrences of p in X
and let E(Xp) and σ(Xp) be the mean and standard devia-
tion, respectively. Then, the z-score associated with p is

where Np is the number of occurrences of p in the strings
in X. Notice that zp gives the number of standard devia-
tions by which the observed value Np exceeds its expected
value. It is normalized so that it has mean zero and stand-
ard deviation one, so that it can be used to compare the z-
score of different strings.

z
N E X

X
p

p p

p

=
− ( )
( )σ

(11)
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The module that computes the z-score in our system takes
in input the set W output by the filtering function, the text
strings t1,...,ts and a model, i.e., a table encoding a Markov
source of order 3, together with additional information
needed for the computation of the variance (see Appendix
A in [39]). The software computing the z-score is a special-
ization of the software of Sinha and Tompa for the com-
putation of the z-score in YMF, that is designed to work for
motifs (a concise and general encoding of a set of strings).
As in their case, the code is designed to work only for DNA
sequences. Therefore, care must be taken in computing
the number of occurrences of a string p in a string t. In fact,
one must count occurrences on both DNA strands. That is
done by including, for each string in the input set W, its
reverse complement.

Two model organisms are available, Human and Yeast, as
they are given by the YMF software distribution of Sinha
and Tompa [39]. Moreover, via the function that gener-
ates a model organism, the user can specify a new model
for her/his sequences. Details on input formats for the
model are given in the User Guide.

6.1 The C/C++ library functions
The function below computes the z-score value of a set of
patterns (all of the same length) with respect to a set of
sequences (all of the same length). It works for DNA only.

Synopsis

#include "z_score.h"

double

z score (char**patterns, char**texts, char*organismpath);

Arguments:

• patterns: is a column vector, each item points to a pattern
string. The last item point to NULL;

• texts: is a column vector, each item points to a text string.
The last item point to NULL;

• organismpath: it is the path to the file containing all prob-
abilistic information for an organism.

Return Values

Upon successful completion z_scorereturn a double
value, corresponding to z-score.

The function below generates a Markov model of order 3,
from a set of strings. It works for DNA only.

Synopsis

#include " model_generatation.h"

int

model_generatation (char**strings, char*path,
char*organism);

Arguments:

• strings: is a column vector, each item points to a string.
The last item point to NULL;

• path: is a output path;

• organism: is the organism name;

Return Values

model_generation returns zero if the computation is
completed successfully and 1 otherwise.

6.2 The Perl library functions
The function below performs a filtering operation on a set
of sequences.

use BATS::Filter;

Filter files hits score Hitsthreshold Filesthreshold

Arguments:

• files: is an array of strings containing the filenames.

• hits: is a hash reference containing number of hits for
each occurrence per file.

• score: is a hash reference containing number of errors for
each occurrence.

• Filesthreshold: is a scalar containing the minimum
number of hits on which occurrences need to be present.

• Filesthreshold: is a scalar containing the minimum per-
centage of files on which occurrences need to be present.

Return values Filter returns an array containing indices of
hits that satisfy the threshold.

The function below computes the z-score value of a set of
patterns (all of the same length) with respect to a set of
sequences (all of the same length). It works for DNA only.

Synopsis
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use BATS::Z_Score;

Z_Score patters texts organismpath

Arguments:

• patterns: is an array of strings containing the set of pat-
terns;

• sequences: is an array of strings containing the text
strings;

• organismpath: it is the path to the file containing all prob-
abilistic information for an organism.

Return values:

Z_Score returns a scalar containing the z-score value of the
pattern set.

The function below generates a Markov model of order 3,
from a set of strings. It works for DNA only.

Synopsis

use BATS::Model_Generation;

Model_Generatation strings path organism

Arguments:

• strings: is an array of strings;

• path: is a scalar containing the string of the output path;

• organism: points to the string containing the name of the
organism;

Return values: Model_Generation returns a scalar con-
taining 0 if the computation is completed successfully and
1 otherwise.

7 Conclusion
We have presented a software library for some basic global
and local sequence alignment tasks. Moreover, procedures
to assess the statistical significance of the occurrence of a
set of DNA pattern strings in a set of DNA text strings has
also been provided. Although none of the presented algo-
rithms is new, this the first software library that provides
their implementation in one consistent and ready to use
package.
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