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Abstract
Background: Most cellular processes are carried out by multi-protein complexes, groups of
proteins that bind together to perform a specific task. Some proteins form stable complexes, while
other proteins form transient associations and are part of several complexes at different stages of
a cellular process. A better understanding of this higher-order organization of proteins into
overlapping complexes is an important step towards unveiling functional and evolutionary
mechanisms behind biological networks.

Results: We propose a new method for identifying and representing overlapping protein
complexes (or larger units called functional groups) within a protein interaction network. We
develop a graph-theoretical framework that enables automatic construction of such
representation. We illustrate the effectiveness of our method by applying it to TNFα/NF-κB and
pheromone signaling pathways.

Conclusion: The proposed representation helps in understanding the transitions between
functional groups and allows for tracking a protein's path through a cascade of functional groups.
Therefore, depending on the nature of the network, our representation is capable of elucidating
temporal relations between functional groups. Our results show that the proposed method opens
a new avenue for the analysis of protein interaction networks.

Background
A major challenge in systems biology is to understand the
intricate network of interacting molecules. The complex-
ity in biological systems arises not only from various indi-
vidual protein molecules but also from their organization
into systems with numerous interacting partners. In fact,
most cellular processes are carried out by multi-protein
complexes, groups of proteins that bind together to per-

form a specific task. Some proteins form stable complexes,
such as the ribosomal complex that consists of more than
50 proteins and three RNA molecules, while other pro-
teins form transient associations and are part of several
complexes at different stages of a cellular process. A better
understanding of this higher-order organization of pro-
teins into overlapping complexes is an important step
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towards unveiling functional and evolutionary mecha-
nisms behind biological networks.

Data on protein complexes are collected from the study of
individual systems, and more recently through high-
throughput experiments, such as yeast two-hybrid (Y2H)
[1,2] and tandem affinity purification followed by mass
spectrometry (TAP/MS) [3,4]. The TAP/MS approach
helps pinpoint proteins that interact with a tagged bait
protein, either directly or indirectly, and are thus suited to
identify multi-protein complexes. In fact, several research
groups have systematically applied TAP/MS technology to
study protein complexes involved in different signaling
pathways [5].

Protein interactions are routinely represented as graphs,
with proteins as nodes and interactions as edges (links).
Therefore, it is not surprising that analysis of protein inter-
action networks reach out for a variety of graph-theoreti-
cal tools. Following the observation that protein
interaction networks display a characteristic power-law
like node degree distribution [6], a substantial body of
research focused on statistical properties of protein inter-
action networks [7,8]. In 1999, Hartwell et al. [9] intro-
duced a notion of a functional module, a group of cellular
components and their interaction that can be attributed a
specific biological function. The authors also suggested
the modular organization of molecular interaction net-
works, where each functional module involves a small
number of cellular components and is autonomous, i.e.,
its interaction with other modules is limited to a few cel-
lular components. Subsequently, this assumption was
used in several computational methods to identify protein
complexes and functional modules in high-throughput
protein interaction networks [10-15]. Some methods [10-
13] look for densely connected subgraphs within a pro-
tein interaction network, either cliques or "cliquish" com-
ponents. For example, Spirin et al. [13] use the term
functional module to denote groups of proteins which are
densely connected within themselves but sparsely con-
nected with the rest of the network. Other methods
[14,15] combine protein interaction with other informa-
tion to identify functional modules, such as signal trans-
duction pathways, that do not necessarily correspond to
densely connected regions of the network. 

In a recent paper, Gagneur et al. applied modular decompo-
sition to elucidate the organization of protein complexes
[16]. The basic principle behind modular decomposition
is to iteratively identify and contract nodes that are in a
certain sense equivalent, until no more equivalent nodes
can be found in the graph. A graph is called prime if it can-
not be decomposed any further. Only graphs that belong
to a very special graph family called cographs can be com-
pletely decomposed (that is, the iterative reduction proc-

ess does not halt with a non-trivial prime graph). While
the modular decomposition provides an excellent
description of combinatorial variants within a family of
complexes, it does not impose any order on the com-
plexes within the family. As such it lacks the description
power to represent the dynamics of complex formation,
i.e., the manner in which proteins form transient interac-
tions to participate in the complexes within the family.
The order imposed on protein complexes within the fam-
ily is particularly interesting if the family corresponds to a
functional module where biological function is achieved
through a dynamic formation of protein complexes and
the order reflects this formation.

In this work, we model a functional module as a union of
overlapping dense subnetworks called here functional
groups. A functional group is either a maximal clique (typ-
ically representing a protein complex) or a set of alterna-
tive variants of such complexes/cliques. As components of
a larger functional module, functional groups are not
assumed to be well separated and can have significant
overlaps. Intuitively, if a functional module performs a
function that requires a sequence of steps (like in the case
of a signaling pathway) then we would like functional
groups to be snapshots of protein associations at these
steps. We propose a new method for identifying and rep-
resenting overlapping functional groups in a functional
module. Furthermore, if the module corresponds to a
dynamic process that requires certain complexes (or more
generally functional groups) come into contact in a spe-
cific order, our method attempts to discover this order.
Our method is motivated by a fundamental result for
chordal graphs [17], which states that every chordal graph
has the so called clique tree representation. However, not
every protein interaction network is chordal and not every
functional group is a clique. Therefore, we developed a
graph-theoretical framework that enables automatic con-
struction of a tree-like representation, analogous to the
clique tree representation, for much broader family of
graphs. We call this representation the Tree of Complexes
representation. The nodes in the tree are functional
groups, and for every protein, the set of functional groups
that contain this protein forms a single subtree. The "sin-
gle subtree" requirement restricts significantly the way in
which the nodes of the tree can be interconnected. As a
consequence, this representation shows a smooth transi-
tion between functional groups and allows for tracking a
protein's path through a cascade of functional groups.
Therefore, depending on the nature of the network, the
representation may be capable of elucidating temporal
relations between functional groups.

We developed a new method, Complex Overlap Decomposi-
tion (COD), that given a protein interaction network iden-
tifies its functional groups and constructs the Tree of
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Complexes representation. Our method requires that the
network satisfies certain mathematical properties. We
applied the COD method to several protein interaction
networks, such as the TNFα/NF-κB signaling pathway and
the pheromone signaling pathway. The corresponding
subnetworks for all interaction networks are extracted
from high throughput experimental data. Our results
show that the COD method opens a new avenue for the
analysis of protein interaction networks.

Results and discussion
One way to represent a set of overlapping functional
groups is to construct a graph with nodes representing
functional groups and edges representing overlaps, i.e.,
there exists an edge between two functional groups if and
only if they share at least one protein. This approach has
two shortcomings. First, it is not obvious how to correctly
identify functional groups, and second, such a representa-
tion does not provide any information about the dynam-
ics of proteins in the network. We propose a graph-
theoretical approach, which, under the assumption that
the protein interaction network satisfies certain mathe-
matical properties, identifies functional groups and pro-
vides a representation of overlaps between functional
groups in the form of the Tree of Complexes.

Here, we first describe the COD method. Then, we dem-
onstrate the utility of our approach by applying the COD
method to several examples, derived from high-through-
put experiments, TNFα/NF-κB and pheromone signaling
pathway interaction networks.

Complex overlap decomposition
Our method of representing overlapping functional
groups, which is depicted in Figure 1, builds on chordal
and cograph graph theories. Chordal graphs constitute an
important and well studied graph family [18,19]. A chord
in a graph is any edge that connects two non-consecutive
nodes of a cycle. A chordal graph is a graph which does not
contain chordless cycles of length greater than three.

An important property of chordal graphs, which is
explored directly in this paper, is that every chordal graph
has a corresponding clique tree representation or clique tree
[17]. The nodes in the tree are maximal cliques. Moreover,
for every node in the graph, a set of maximal cliques that
contain this node form a connected subgraph of the
clique tree. Thus, there is a mapping between the nodes in
the graph and subtrees in the clique tree. The "connected
subgraph" requirement puts constraints on the topology
of the clique tree. In fact, the topology of the tree is deter-
mined by the structure of overlaps between the maximal
cliques in the graph. Thus, the clique tree captures infor-
mation about the structure of the overlaps, which is lost in

a simple clique intersection graph as shown in the exam-
ple below.

Example Consider a hypothetical protein interaction net-
work in Figure 2(a). This network is chordal and its maxi-
mal cliques are listed in Figure 2(b). We want to contrast
the clique tree representation in Figure 2(d) to a naive rep-
resentation in Figure 2(c), where every pair of maximal
cliques that contain a protein in common is connected by
an edge.

While both representations show the overlap between
maximal cliques, the interconnection pattern of cliques in
the naive representation carries little additional informa-
tion about the structure of this overlap. On the other
hand, a very specific tree-like interconnection pattern in
the clique tree representation can expose a special struc-
ture of such overlap. For example, consider maximal
cliques B through F. In the naive representation, the over-
lap between these maximal cliques is collapsed to a
clique. Thus, the representation treats the maximal cliques
and overlaps between them equally. In particular, there is
no way to tell that, for example, D occupies a more central
position in the network than B. In the clique tree represen-
tation this information can be extracted from the relative
position of cliques in the tree. For example, B is connected
to F by a path that passes through C and D, which means
that any protein shared by B and F is also contained in C
and D. In other words, the overlap between B and F is
entirely contained in the overlap between B and D, which
in turn is entirely contained in the overlap between B and
C. Thus, there is a correlation between the amount of
overlap between maximal cliques and their distance in the
clique tree.

Nice properties of the clique tree mentioned above make
it a good choice for representation of overlaps between
functional groups. However, not every protein interaction
network is chordal and maximal cliques may not always
be the best way to represent functional groups. For exam-
ple, in Figure 1, cliques {1, 2, 3} and {1, 2, 4} may corre-
spond to two variants of one complex, where proteins 3
and 4 replace each other, forming one rather than two
functional groups. Therefore, in the COD decomposition
we relax the assumption that every functional group is a
single protein complex (maximal clique) and allow it to
contain several protein complexes (maximal cliques). In
doing so we have to ensure that a functional group is not
just any collection of protein complexes but rather a set of
closely related protein complexes which represent possi-
ble variants of one complex (such as complexes {1, 2, 3}
and {1, 2, 4} in the above example). To capture this sys-
tematically we model a functional group with a graph
from a family of graphs known as cographs.
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Cographs are another well-studied graph family [20]. A
cograph can be characterized by an absence of an induced
subgraph which is a path of length four (P4), where the
length is the number of nodes in the path. Thus, the diam-
eter of a connected cograph is at most two. Subsequently,
connected cographs are dense and cliquish, consistently
with the assumption made by algorithms that delineate
protein complexes. What makes cographs even more
attractive is that for every cograph there exists a Boolean

expression which describes all the maximal cliques in the
graph. (In terms of modular decomposition used in [16]
it means that a cograph can be decomposed by modular
decomposition without leaving non-trivial non-decom-
posable prime module.) This Booolean expression
describes in a compact and hierarchical way all the possi-
ble variants of protein complex within a functional group.

Complex Overlap DecompositionFigure 1
Complex Overlap Decomposition. A simplified illustration of the Complex Overlap Decomposition (COD) method. An 
edge, (3, 4), connecting a pair of weak siblings is added to the graph. A fill-in edge between proteins 5 and 8 is added to elimi-
nate all five 4-cycles in the graph: {5, 6, 8, 7}, {1, 5, 7, 8}, {2, 5, 7, 8}, {1, 5, 6, 8}, and {2, 5, 6, 8}. If the modified graph is chordal, 
all clique tree representations are computed (cf. Methods). Each clique tree representation results in a Tree of Complexes 
representation, where the Tree of Complexes is constructed by projecting each maximal clique in the modified graph, G*, to a 
functional group in the original graph G. For example, a four node maximal clique, {1, 2, 5, 8}, in G* is projected to a four node 
functional group in G, by removing a fill-in edge (5, 8). Each functional group is represented by a Boolean expression, such as (1 
∧ 2) ∧ (5 ∨ 8), which means that the functional group contains two variants of a complex, {1, 2, 5} and {1, 2, 8}.
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The main idea behind COD method is to provide a repre-
sentation of a functional module, which is analogous to
the clique tree, in which nodes are cographs (representing
variants of protein complex within a functional group)
rather than maximal cliques. If we knew in advance all the
functional groups in the module, we could simply con-
nect the proteins within each functional group turning it
into a clique and, under the assumption that the resulting
graph is chordal, apply clique tree construction algorithm
to the graph. Since we do not have predefined functional
groups, our algorithm identifies them by adding edges to
the graph in such a way that each added edge connects a

pair of nodes that putatively belong to the same func-
tional group.

The COD method's edge addition strategy and its biolog-
ical motivation builds on a concept of weak siblings. We
call a pair of nodes weak siblings if and only if they are
connected to the exactly the same set of neighbors, but are
not connected to each other. In terms of protein interac-
tion networks, weak siblings are proteins which interact
with the same set of proteins but do not interact with each
other. In particular, proteins that can substitute each other
in a protein interaction network may have this property.

A Hypothetical Protein Interaction NetworkFigure 2
A Hypothetical Protein Interaction Network. (a) A hypothetical protein interaction network. (b) A list of all maximal 
cliques in the network. (c) A naive representation of overlaps between maximal cliques. Each maximal clique is a node and 
there is an edge between two maximal cliques if and only if they share a protein. (d) The clique tree representation. Once 
again, every maximal clique is a node, but the cliques are connected in such a way that the resulting graph is a tree. Moreover, 
cliques that contain a given protein form a connected subgraph. (e) This color scheme is used to show the subtree of every 
protein. For example, protein 3 is contained in maximal cliques A, B, and C, which is shown by placing yellow dots above the 
maximal cliques.
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Similarly, a pair of proteins that belong to the same com-
plex but are not connected due to missing data or an
experimental error will be represented as weak siblings.
Since the weak siblings relationship suggests functional
similarity, the COD method takes a first step towards
delineation of functional groups by connecting every pair
of weak siblings by an edge. As this modification may also
eliminate some of the chordless cycles of length four
(squares) in the graph, functional group delineation hap-
pens simultaneously with transformation of the protein
interaction graph into a chordal graph.

If, after connecting all pairs of weak siblings, the resulting
graph is not chordal, the COD method attempts to trans-
form it to chordal by adding some additional edges. Con-
sistently with our assumption that we connect only nodes
corresponding to proteins that could be put in the same
functional group, we impose restrictions on this "fill-in"
process. Namely, we require that, each introduced edge
connects a pair of nodes which are close to being weak sib-
lings. In such case the new edge is a diagonal of one or
more squares in the graph. We emphasize that adding
edges between nodes of longer cycles has no such justifi-
cation. To summarize our edge addition procedure, our
method attempts to eliminate all the squares in the pro-
tein interaction network by adding a limited set of diago-
nals that satisfies following conditions (i) connects
potentially functionally equivalent proteins, as measured
by the overlap in neighborhoods or distance from being a
pair of weak siblings; (ii) ensures that functional groups
correspond to cographs; we argue that this condition is
guaranteed if the set of added edges does not form a P4 in
a maximal clique of the modified graph (cf. Methods);

If the modification step succeeds, i.e., the modified graph
is chordal, all the clique tree representations of the modi-
fied graph are computed and then each clique tree is
extended to a Tree of Complexes representation of the
original graph. The COD algorithm keeps track of all the
edge additions and uses this information to delineate
functional groups by projecting each maximal clique onto
original network and removing all introduced edges con-
tained in the clique. For example, in the modified graph
of Figure 1 a maximal clique with four nodes, {1, 2, 5, 8},
is projected to a functional group by removing an edge
connecting proteins 5 and 8. This functional group con-
tains two variants of a protein complex, {1, 2, 5} and {1,
2, 8}, which are compactly represented by a (1 ∧ 2) ∧ (5
∨ 8) Boolean expression. If, on the other hand, the modi-
fied graph is not chordal, the COD method stops without
producing the representation. Since the clique tree repre-
sentation for a chordal graph is not unique, the Tree of
Complexes representation that derives from it is not
unique either. As all clique trees of a chordal graph have
the same set of nodes (the nodes are the maximal cliques

in the graph), the difference between clique trees comes
from the topology of the tree. The clique tree topology is
determined by the "connected subgraph" constraints and
restriction power of these constraints depends on the
structure of the underlying graph, i.e., there are graphs
with a unique clique tree representation and there are
graphs for which almost any tree that spans all the maxi-
mal cliques in the graph is a valid clique tree. As a result a
protein interaction network may have several Tree of
Complexes representations; all such representations will
have the same functional groups but will differ in the way
these functional groups are interconnected. For every pro-
tein interaction network analyzed bellow we explicitly
state all the possible Tree of Complexes representations.

TNFα/NF-κB signaling pathway
To illustrate the power of COD in elucidating the dynam-
ics behind protein complexes, we consider the TNFα/NF-
κB signaling pathway. The Nuclear Factor κB (NF-κB)
family of transcription factors is activated in response to a
diverse set of stress stimuli, which includes pro-inflamma-
tory cytokines, e.g., TNFα. In vertebrates, this family
includes p50, p52, Rel A, c-Rel, and Rel B, which bind to
the DNA in a homo or heterodimeric fashion. The NF-κB
activity is regulated by the IκB family of proteins via inhib-
itory ankyrin repeat domains. This family includes IκBα,
IκBβ, and IκB∈. The precursors of p50 (p105) and p52
(pl00) also possess ankyrin repeat domains and thus act
as inhibitors. These precursors can also form dimers with
other members of the NF-κB family. The activation with
the pro-inflammatory cytokine tumor necrosis factor
TNFα triggers a signaling cascade, which, in particular,
stimulates the activation of the IKKα, IKKβ, and IKKγ
functional groups. The IKKs initiate a signal induced deg-
radation of the inhibitors (IκBs), and subsequent nuclear
translocation of the transcription factor. Recent TAP
experiments [5] provide a wealth of new information
regarding this important signaling pathway. Bouwmeester
et al. identified 221 molecular associations, out of which
only 80 where previously known. Gagneur et al. [16]
applied modular decomposition to the network of these
associations but the decomposition halted quickly at large
non-decomposable modules.

We used the COD method to analyze the subnetwork
spanning all the paths from NIK (NFκB-inducing kinase
phosphorylating IKKα and IKKβ) with at most three
edges. For the purpose of the analysis, we contracted all
five members of NF-κB family into one node. As the
resulting protein interaction network, shown in Figure
3(a), is chordal without weak siblings, functional groups
correspond to maximal cliques in the network.

For this network, there are two alternative Tree of Com-
plexes representations: functional group E can be con-
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nected to either D or C. The representation that maximizes
the number of leaves is shown in Figure 3(b). One can
clearly see the interplay between the activators and inhib-
itors. Proteins p105 and NF-κB participate in the same
functional groups and thus follow the same path in the
tree. The same is true for the pair of proteins IkBα and
IkBβ. The Tree of Complexes captures this by grouping
p105 and NF-κB, and IkBα and IkBβ.

Pheromone signaling pathway
The yeast Saccharomyces cerevisiae may be present in one of
two haploid cell types, which are able to mate. Pherom-
ones released by one type of cell bind to a specific receptor

of the other type. This triggers the activation of a scaffold
protein-bound mitogen-activated protein kinase (MAPK)
cascade and subsequent activation of nuclear proteins that
control subsequent cellular events. In a recent paper, Spi-
rin et al. [13] identified a subnetwork of proteins involved
in this process within a yeast protein interaction network
[21]. We analyzed this subnetwork using the COD to see
if our method can extract elements of temporal ordering.
The subnetwork identified by Spirin et al. and its Tree of
Complexes representation is given in Figure 4. In this case,
the protein network is not chordal. First, the COD method
identifies and connects a pair of weak siblings, MKKl and
MKK2 .Then, to transform the network to a chordal graph,

TNFα/NF-κB Signaling PathwayFigure 3
TNFα/NF-κB Signaling Pathway. The TNFα/NF-κB signaling pathway. (a) The network. (b) The Tree of Complexes repre-
sentation. The flow of action is visually represented by background colors: green for activators (IKKs) and yellow for inhibitors 
(IκBs, and p100). The NIK kinase is in the first functional group (A), together with all three members of the IKK complex and 
p100. Functional group B includes, in addition to p100, the IKKs and two inhibitors IκBα and IκBβ. This group is the beginning 
of interaction between IKKs and IκBs. Functional group C loses some of the IKKs, continues to show IκB and begins to show 
interaction between IκBs and NF-κB factors. Finally, in group E we see the entrance of NIK-independent Col-Tpl2 kinase.
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three additional edges are added: (SPH1, SPA2), (FUS3,
KSS1), and (STE11, STE7). In this case, some functional
groups will contain more than one protein complex.

This network admits six different Tree of Complexes rep-
resentations: (i) functional group H can be connected to
either B or C; (ii) any interconnection pattern that spans
groups E, F, and G can be chosen. If we ask for a tree with
maximum number of leaves, the number of tree variants
is reduced to two (option (i)).

The MAPK cascade module consists of three sequentially
acting protein kinases: MAP kinase kinase kinase (STE11)
MAP kinase kinase (STE7) and MAP kinase (KSS1, FUS3)
[22]. MKKl and MKK2 are two redundant protein kinase
kinases (most similar to STE7) [23]. Their redundancy is
properly captured by the ∨ (OR) in their functional group
(H). The MAP kinases KSS1 and FUS3 are two separate
kinases both activated by STE7 each of which is essential
for a different program: FUS3 – for mating; KSS1 – for the
filamentous growth [24]. Once again this is correctly cap-
tured by ∨ (OR) in groups F and G. STE5 is a scaffold pro-
tein of the MAPK module. It recruits MAPK module
kinases (STE11, STE7, FUS3). This is consistent with the
central position of a functional group containing STE5 in

the tree and relative to the paths of STE7, STE11 and FUS3.
Finally, nuclear proteins DIG1 and DIG2 (necessary for
transcription inhibition, which are regulated by both
FUS3 and KSS1) enter at the endpoint (node F) in the tree.

Conclusion
Recent advances in experimental techniques resulted in
the accumulation of a vast amount of protein interaction
information, which is routinely represented by protein
interaction networks. Therefore it is not surprising that
increasingly more complex graph-theoretical tools are
deployed to analyze protein interaction graphs and extract
biologically meaningful patterns.

In general, graphs are not required to have any type of reg-
ularity. This makes them a very flexible tool which is able
to represent complex relationships. However, this often
also makes them computationally hard to deal with, for
many problems in graph theory are NP-complete. Fre-
quently graph theoretical problems can be simplified if
some restrictions are imposed on the graph. Various
restrictions give rise to various graph families. Given a
graph family, it is usually very useful to be able to repre-
sent it using some kind of a tree. Such tree representation

Pheromone Signaling PathwayFigure 4
Pheromone Signaling Pathway. The pheromone signaling pathway. (a) The network. (b) The Tree of Complexes represen-
tation. For the description of the elements of the tree see the text.
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exposes a hierarchical organization that a graph may have,
allowing for a structured analysis of it.

In this work we proposed a tree representation for protein
interaction graphs called Tree of Complexes representa-
tion. Nodes in the Tree of Complexes are functional
groups and the tree satisfies the additional condition that
functional groups that contain any fixed protein form a
connected subgraph. In this way, our representation cap-
tures not only the overlap between functional groups but,
potentially, also the manner in which proteins enter and
leave their enclosing functional groups. We developed a
method (together with the corresponding graph-theoreti-
cal theory) for efficient identification of such overlapping
functional groups and construction of the corresponding
Tree of Complexes. In particular, our method differs from
other approaches in that it does not attempt to enumerate
disjoint complexes but instead identifies and represents
relations between overlapping functional groups. Even
though the Tree of Complexes representation is not
unique, the protein interaction networks that we analyzed
admit very few alternative tree topologies. If we ask for a
tree topology with a maximum number of leaves, as not
to impose an artificial order between functional groups,
the number of tree topologies is reduced even further.
Thus, in the TNFα/NF-κB signalling pathway this results
in a unique Tree of Complexes representation and in the
pheromone signalling pathway in two very closely related
possible Tree of Complexes representations. The nature of
high-throughput protein interaction data does not
directly imply that this data encodes temporal relations.
We demonstrated that our method is frequently capable
of discovering such temporal relations. Interestingly, tem-
poral associations can also be implicated in the absence of
actual interaction in the data. For example, in the case of
the pheromone signaling pathway, our method correctly
included KSS1 and FUS3 in the same functional group
(treated here as temporal associations), despite the fact
that there is no link between KSS1 and FUS3 in the input
protein interaction network.

Obviously, there are limitations to deciphering such tem-
poral relations. For example, we cannot provide temporal
ordering between different tree branches. Furthermore, if
a functional group is not a clique but is represented as a
Boolean expression indicating various possibilities for
such group, then one can not be sure if these variants are
mutually exclusive or if they represent partial information
capturing incomplete data. Even in the case when the
functional unit forms a clique it is still possible that it con-
tains interactions that are not simultaneous. For example,
interactions between pairs (A, B), (B, C) and (C, A) are
represent as a three-vertex clique with nodes A, B, C and
thus cannot be distinguished from a trimer (A, B, C). Such
coincidences are less likely for larger cliques.

Although our algorithm is not guaranteed to produce the
Tree of Complexes representation for every possible pro-
tein interaction network, the algorithm will succeed for a
broad family of graphs, which includes chordal graphs
(and thus interval graphs) and cographs. Currently, our
method can be applied to protein interaction networks
that do not contain long (longer than four node) chord-
less cycles. As a consequence, it is more appropriate for
analyzing dedicated subnetworks or modules than large
protein interaction networks, which are expected to con-
tain such long cycles. We distinguish between two differ-
ent types of problematic networks for our method. First
type includes networks for which imposing a temporal
order that encompasses all functional groups in the net-
work is meaningless. Second type includes networks for
which such order is meaningful, but the assumption that
the overlap between functional groups has a tree-like
structure is not valid. We plan to extend our approach to
deal with networks of the second type by utilizing graph-
theoretical tools developed for other specialized graph
families, such as arc-intersection graphs.

Another issue that requires further investigation is the
presence of noise in high-throughput protein interaction
networks and its effect on the Tree of Complexes represen-
tation. While our method deals to some extent with false
negatives, through its edge addition procedure, the issue
of false positives is not addressed. We plan to explore
alternative graph modification procedures that will incor-
porate both false negative and false positive interactions.

Methods
Computing clique trees
We use an elegant and efficient strategy for chordal graph
recognition outlined in [19]. We use an algorithm from
[25] to compute all clique trees for a chordal graph.

A compact boolean representation of functional groups
Recall that a functional group corresponds to a maximal
clique in the modified protein interaction network, with
modifications being addition of edges between every pair
of weak siblings and then addition of edges that eliminate
all the squares in the graph. The edge addition is such that
no maximal clique in the modified graph contains an
induced P4 formed entirely by the added edges. Following
lemma guarantees that every functional group is a
cograph and therefore admits a compact Boolean repre-
sentation.

Lemma For every functional group, a subgraph of the
original graph induced by the members of the group con-
tains an induced P4 if and only if the set of edges added by
our algorithm contains an induced P4.
Page 9 of 11
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Proof The argument follows from Figure 5. Indeed, (v1, v2,
v3, v4) is a P4 in the original graph if and only if (v3, v1, v4,
v2) is a P4 formed by the added edges.

Edge addition
We use a reduction to the Minimum Vertex Cover prob-
lem to find all minimal sets of up to k edges that eliminate
all the squares in the graph.

Each eliminating set of edges, S = {e1,..., er}, is assigned a
cost:

where sim(ei) takes values between 1.0 and 0.0, and meas-

ures our confidence in adding ei to the graph. Since the

addition of ei = (ui, vi) implies an interaction or functional

equivalence between proteins ui and vi, we chose sim(ei) to

be the amount of overlap between the neighborhoods of

ui and vi, i.e., sim(ei) = , where  (vi)

denotes a set of neighbors of node vi in the graph. Intui-

tively, sim(ei) measures how close ui and vi are to being a

pair of weak siblings. If ui and vi have the same neighbor-

hoods then sim(ei) = 1.0; as the overlap between the

neighborhoods decreases, sim(ei) goes to 0.0. Then, we

pick an edge set with the minimum cost from all the edge
sets that do not form a P4, which is entirely contained in

one of the maximal cliques of the modified graph. The last
requirement is necessary to ensure that each functional
group is a cograph.

Reduction to the minimum vertex cover
A square in a graph can be eliminated by adding one or
both of its diagonals (chords) to the graph. For example,
a graph in Figure 6 has two squares: (A, B, C, D) and (A,
B, E, D). Note that (B, C, D, E) is not a square as one of its
diagonals, (C, E), is an edge in the graph. The square (A,
B, C, D) can be eliminated if either edge (A, C) or (B, D)
is added to the graph. Furthermore, a single diagonal can
eliminate more than one square. For example, the diago-
nal (B, D)eliminates both squares. We are interested in
finding all minimal sets of diagonals of size up to k that
eliminate all the squares in the graph.

We reduce the above problem to the Minimum Vertex
Cover problem. The squares in the original graph become
edges and diagonals become vertices in the new graph.
Thus the original graph is transformed to a "square cover-
age" graph, which in turn serves as an input to the Mini-
mum Vertex Cover problem. In the Minimum Vertex
Cover problem we are given a graph and are asked to find
the smallest set of vertices that cover all the edges in the
graph. An edge is covered if at least one of its end points
is selected. Coming back to our example, it can be easily
seen that {(B, D)} is the minimum vertex cover (Figure 6).
Although the Minimum Vertex Cover problem is an NP-
hard problem, if the size of the optimum solution is small
an efficient algorithm can be obtained. In other words the
Minimum Vertex Cover problem is fixed parameter tracta-
ble. We use an O(2k(n + m)) algorithm [26] to identify all
minimal sets of edges of size up to k that eliminate all the
squares in the graph.

Graphs that have tree of complexes representation
The COD method is not guaranteed to produce the Tree of
Complexes representation for every possible protein inter-
action network. How can a family of graphs that admit
Tree of Complexes representation be characterized? First,
we argue that chordal graphs belong to this family. It can

cost sim( ) ( . ( )),S ei
i

= −∑ 1 0

| ( ) ( ) |

| ( ) ( ) |

 
 

u v

u v
i i

i i

∩
∪



VC ReductionFigure 6
VC Reduction. A graph and a corresponding "square cov-
erage graph".

P4Figure 5
P4. A P4 in the subgraph induced by the members of a func-
tional group corresponds to a P4 in the set of added edges. 
Solid lines correspond to the original edges and dashed lines 
correspond to the added edges.
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be shown that addition of edges that connect weak sib-
lings does not introduce chordless cycles to the graph.
Therefore, after all weak siblings are connected the graph
is still chordal and thus admits Tree of Complexes repre-
sentation. Next, we argue that cographs admit Tree of
Complexes representation. Our methods eliminates all
the squares in the graph, unless every possible set of elim-
inating edges forms a P4, which is entirely contained in
one of the maximal cliques of the modified graph. It can
be shown that the latter case is possible only when the
original graph contains a P4, and thus is not a cograph. We
conjecture that graphs that admit Tree of Complexes rep-
resentation are exactly those graphs that admit a clique
tree representation, with the nodes being maximal
cographs rather than maximal cliques.
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