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Abstract
Background: Motif patterns of maximal saturation emerged originally in contexts of pattern
discovery in biomolecular sequences and have recently proven a valuable notion also in the design
of data compression schemes. Informally, a motif is a string of intermittently solid and wild
characters that recurs more or less frequently in an input sequence or family of sequences. Motif
discovery techniques and tools tend to be computationally imposing, however, special classes of
"rigid" motifs have been identified of which the discovery is affordable in low polynomial time.

Results: In the present work, "extensible" motifs are considered such that each sequence of gaps
comes endowed with some elasticity, whereby the same pattern may be stretched to fit segments
of the source that match all the solid characters but are otherwise of different lengths. A few
applications of this notion are then described. In applications of data compression by textual
substitution, extensible motifs are seen to bring savings on the size of the codebook, and hence to
improve compression. In germane contexts, in which compressibility is used in its dual role as a
basis for structural inference and classification, extensible motifs are seen to support unsupervised
classification and phylogeny reconstruction.

Conclusion: Off-line compression based on extensible motifs can be used advantageously to
compress and classify biological sequences.

Background
Let s be a sequence of sets of characters from an alphabet
Σ ∫ {·}, where '.' ∉ Σ denotes a don't care (dot, for short)
and the rest are solid characters, we use σ to denote a sin-
gleton character. For characters e1 and e2, we write e1 � e2 if
and only if e1 is a dot or e1 = e2. Allowing for spacers in a
string is what makes it extensible. Such spacers are indi-
cated by annotating the dot characters. Specifically, an
annotated "." character is written as .α where α is a set of
positive integers {α1, α2, ..., αk} or an interval α = [αl, αu],
representing all integers between αl and αu including αl
and αu. Whenever defined, d will denote the maximum

number of consecutive dots allowed in a string. In such
cases, for clarity of notation, we use the extensible wild card
denoted by the dash symbol "-" instead of the annotated
dot character, .[1,d] in the string. Note that '-' ∉ Σ. Thus a
string of the form a.[1,d]b will be simply written as a-b. A
motif m is extensible if it contains at least one annotated
dot, otherwise m is rigid. Given an extensible string m, a
rigid string m' is a realization of m if each annotated dot .α

is replaced by l ∈ α dots. The collection of all such rigid
realizations of m is denoted by R(m). A rigid string m
occurs at position l on s if m[j] � s[l + j - 1] holds for 1 ≤ j
≤ |m|. An extensible string m occurs at position l in s if
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there exists a realization m' of m that occurs at l. Note than
an extensible string m could possibly occur more than
once at a location on a sequence s. Throughout in the dis-
cussion we are interested mostly in the (unique) first left-
most occurrence at each location.

For a sequence s and positive integer k, k ≤ |s|, a string
(extensible or rigid) m is a motif of s with |m| > 1 and loca-
tion list m = (l1, l2, ..., lp), if both m[1] and m[|m|] are

solid and m, | m| ≥ k, is the list of all and only the

occurrences of m in s. Given a motif m let m[j1], m[j2], ...

m[jl] be the l solid elements in the motif m. Then the sub-

motifs of m are given as follows: for every ji, jt, the sub-

motif m[ji ... jt] is obtained by dropping all the elements

before (to the left of) ji and all elements after (to the right

of) jt in m. We also say that m is a condensation for any of

its sub-motifs. We are interested in motifs for which any
condensation would disrupt the list of occurrences. For-
mally, let m1, m2, ..., mj be the motifs in a string s. A motif

mi is maximal in length if there exists no ml, l ≠ i with

 and mi is a sub-motif of ml. A motif mi is max-

imal in composition if no dot character of mi can be replaced

by a solid character that appears in all the locations in

m. A motif mi is maximal in extension if no annotated dot

character of mi can be replaced by a fixed length substring

(without annotated dot characters) that appears in all the
locations in m. A maximal motif is maximal in compo-

sition, in extension and in length. For an exhaustive
description of these properties we refer the reader to [1].

Results and discussion
Several measures of distance have been proposed and
used to classify documents of diverse nature and to infer
relationships among them. In practice, each measure
translates in a computational task which might be more or
less of a burden. In domains such as genome analysis and
natural language processing, the increasing availability of
longer and longer sequences and more and more massive
data sets is playing havoc with similarity measures based
on edit computations and the likes [2]. As an alternative,
succinct scores related to compressibility -interpreted as a
measure of structural complexity or information contents-
have been deployed, of which the lineage may be traced
back to Kolmogorov's complexity. The Kolmogorov com-
plexity of a string x, denoted K(x), is the length of the short-
est program that would cause a standard universal
computer to output x. Along the same lines, the conditional
Kolmogorov complexity K(x|y) for strings x and y is defined
as the length of the shortest program that, given y as input,


 

| | | | m mi l
=





Table 1: The pseudocode of the motif extraction algorithm.

Main() Iterate(m, B, Result)
{ {
Result ← {}; G:l  m' ← m;
B ← {mi|mi is a cell}; G:2  For each b = Extract(B) with
For each m = Extract(B) G:3  ((b ~-compatible m'
Iterate(m, B, Result);  OR (m' ~-compatible b))
Result ← Result; G:4  If (m' ~-compatible b)
} G:5  mt ← m' ~ b;

G:6  If Nodelnconsistent(mt) exit;

G:7  If (| m'| = | b|) B ← B - {b};

G:8  If (| | ≤ K)

G:9  m' ← mt;
G:10  Iterate(m', B, Result);
G:11  If (b ~-compatible m')
G:12  mt ← b ~ m';
G:13  If Nodelnconsistent(mt) exit;

G:14  If (| m'| = | b|) B ← B - {b};

G:15  If (| | ≥ K)

G:16  m' ← mt;
G:17  Iterate(m', B, Result);

G:18  For each r ∈ Result with r = m'

G:19  If (m' is not maximal w.r.t. r) return;
G:20  Result ← Result ∫ {m'};
}

 
mt

 
mt
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will output x as the result. Intuitively, the conditional
complexity expresses the information difference between
the strings x and y. We refer the reader to, e.g., [3] for a
detailed treatment of the theory. Whereas the original Kol-
mogorov complexity is hardly computable, important
emulators have been developed since [4], which conju-
gate compressibility and ease of computation. Following
in these steps, we now test the discriminating power of the
data compression method that is based on our Off-line
steepest descent paradigm with extensible motifs.

In this paper, we present lossy off-line data compression
techniques by textual substitution in which the patterns
used in compression are chosen among the extensible
motifs that are found to recur in the textstring with a min-
imum pre-specified frequency. Motif discovery and motif-
driven parses of various kinds have been previously intro-
duced and used in [5]. Whereas the motifs considered in
those studies are "rigid", here we assume that each
sequence of gaps present in a motif comes endowed with
some individually prescribed degree of elasticity, whereby
a same pattern may be stretched to fit segments of the
source that match all the solid characters but are otherwise
of different lengths. This is expected to save on the size of
the codebook, and hence to improve compression.

The figure of compression achieved by our algorithm
shows good sensitivity in telling apart veritable families of
proteins from spurious blends. This sets forth an
approach to classification that does away with alignment.
The data used for the test consists of protein sequences,
which are known to be hardly compressible at all [6]. The
experiment reported below uses three different families
which were picked at random from the PROSITE reposi-
tory: AP endonucleases (acnucl), G-protein coupled
receptors (gprot) and Succinyl-CoA ligases (succ). Table 2
summarizes the results of lossy and lossless compression
for various values of the parameters. The artificial groups
are marked "-mix", the last column shows the lossless
compression ratio of fake over faithful families, when
using motifs with the same parameter values. In all cases,
the artificial families show compression ratios that are
poorer by 10/20%, and the superiority of the lossy vari-
ants manifests itself throughout. The experiments thus
verify the discrimination potential of data compression by
extensible motifs. It seems thus meaningful to build a
classifier on top of this measure. Compressibility by
extensible motifs may be used to set up a similarity meas-
ure on sequences to be used in the inference of phylogeny.
The measure could be extended into a metric distance,
along the lines of [7]. Specifically, we denote by Off-line(z)
the output size obtained when compressing a string z
using the lossless variant of our paradigm, and compute
the quantity:

where (xy) denotes the concatenation of x and y. Hence,
D(x, y) measures the improvement over Off-line(y) that is
brought about by using x as a "dictionary" when com-
pressing y.

In the following experiment we construct a phylogeny of
the Eutherian orders using complete unaligned mitochon-
drial genomes of the following 15 mammals from Gen-
Bank: human (Homo sapiens [GenBank:V00662]),
chimpanzee (Pan troglodytes [GenBank:D38116]),
pigmy chimpanzee (Pan paniscus [GenBank:D38113]),
gorilla (Gorilla gorilla [GenBank:D38114]), orangutan
(Pongo pygmaeus [GenBank:D38115]), gibbon (Hylo-
bates lar [GenBank:X99256]), sumatran orangutan
(Pongo pygmaeus abelii [GenBank:X97707]), horse
(Equus caballus [GenBank:X79547]), white rhino (Cera-
totherium simum [GenBank:Y07726]), harbor seal
(Phoca vitulina [GenBank:X63726]), gray seal (Hali-
choerus grypus [GenBank:X72004]), cat (Felis catus [Gen-
Bank:U20753]), finback whale (Balenoptera physalus
[GenBank:X61145]), blue whale (Balenoptera musculus
[GenBank:X72204]), rat (Rattus norvegicus [Gen-
Bank:X14848]) and house mouse (Mus musculus [Gen-
Bank:V00711]).

The evolutionary tree in Figure 1 is generated by a variant
of the classical neighbor-join where instead of minimiz-
ing the distances between nodes we maximized the sepa-
ration. Specifically, for each pair (x, y) of sequences, the
quantity D(x, y) is computed. Next, the neighbor-join
algorithm is used to build the tree from the matrix of dis-
tances. This algorithms selects a pair of (x, y) among those
achieving the minimum value for D, and creates an inter-
nal node as their father. It then coalesces x and y into a
combined sequence the D value of which is computed as
the maximum (instead of the average) of those of x and y.
The process is continued until the D-matrix has shrunk to
a scalar. The first notable finding is that closely related
species are indeed grouped together, e.g., grayseal with
harboseal, orangutan with sumatranorang, etc. Whereas
there is no gold standard for the entire tree, biologists do
suggest the following grouping for this case:

• Eutheria-Rodens: housemouse, rat.

• Primates: chimpa, gibbon, gorilla, human, orangutan,
pigmychimpa, sumatranorang.

• Ferungulates: bluewhale, finbackwhale, grayseal, har-
boseal, horse, whiterhino.

D x y
Off line xy Off line x Off line y

Off l
( , )

( ) { ( ), ( )}

{
= −- -  -
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min
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The phylogeny obtained in our experiment is very close to
the commonly accepted ones, which suggests that even a
method of compression based on a single type of regular-
ity, as opposed to those that take into account palin-
dromes and other structures may support good
comparative genomics.

For a comparison, the same treatment was applied to
human language text classification, in analogy with what
is found in [7,8]. Figure 2 displays the tree obtained in
experiments performed with a small subset of languages
on the widely translated "Universal Declaration of
Human Rights". Once more, the resulting tree is coherent
with commonly accepted ones.

Conclusion
Comparisons of the compression ratios respectively
achieved by rigid and extensible motifs displays that the
latter bring about additional savings in compression. This
suggests that extensible motifs may be preferred to rigid
ones also in those cases where they are used as bases for
similarity measure and classification among sequences.
The unsupervised classification method built on top of
such measures have been shown here to consistently pro-
duce phylogenic trees for species genomes as well lan-
guage classifications built on text documents.

Methods
Mining extensible motifs
The procedure of motif extraction that is described in
Table 1 essentially constructs the inexact suffix tree of [1]
implicitly, in a different order. The input is a string s of
size n and two positive integers, K and D.

The extensibility parameter D is interpreted in the sense
that up to D (or 1 to D) dot characters between two con-

secutive solid characters are allowed. The output is all
maximal extensible (with D spacers) patterns that occur at
least K times in s. Incidentally, the algorithm can be
adapted to extract rigid motifs as a special case. For this, it
suffices to interpret D as the maximum number of dot
characters between two consecutive solid characters.

The algorithm works by converting the input into a
sequence of possibly overlapping cells: A cell is the small-
est substring in any pattern on s, that has exactly two solid
characters: one at the start and the other at the end posi-
tion of this substring. A maximal extensible pattern is a
sequence of cells.

Initialization phase
The cell is the smallest extensible component of a maximal
pattern and the string can be viewed as a sequence of over-
lapping cells. If no don't care characters are allowed in the
motifs then the cells are non-overlapping. The initializa-
tion phase has the following steps.

Step 1: Construct patterns that have exactly two solid char-
acters in them and separated by no more than D spaces or
"." characters. This is done by scanning the string s from
left to right. Further, for each location we store start and
end position of the pattern. For example, if s = abzdabyxd
and K = 2, D = 2, then all the patterns generated at this step
are: ab, a.z, a..d, bz, b.d, b..a, zd, z.a, z..b, da, d.b, d..y, a.y,
a..x, by, b.x, b..d, yx, y.d, xd, each with its occurrence list.
Thus ab = {(1, 2), (5, 6)}, a.z = {(1, 3)} and so on.

Step 2: The extensible cells are constructed by combining
all the cells with at least one dot character and the same
start and end solid characters. The location list is updated
to reflect the start and end position of each occurrence.

 

Table 2: Comparing sensitivity of lossy versus lossless compression by Off-line with Extensible Motifs, as applied to real and fake 
protein families.

File File len param density Lossy Lossless Compr ratio %
K D

acnucl 4197 10 3 1717 2425
4197 5 3 1757 2370

acnucl-mix 4149 10 3 1864 2629 +8.4
4149 5 3 1972 2621 +10.6

gprot 25482 30 3 7003 9879
25482 20 3 7399 10276

gprot-mix 25335 30 3 8179 11945 +20.9
25335 20 3 8386 11978 +16.5

succ 16297 20 3 4994 7449
16297 10 3 4977 7466

succ-mix 16410 20 3 5929 8803 +18.2
16410 10 3 6415 8962 +19.2
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Continuing the previous example, b-d is generated at this
step with b-d = {(2, 4), (6, 9)}. All cells m with | m| <K

are discarded. In the example, the only surviving cells are
ab, b-d with ab = {(1, 2), (5, 6)} and b-d = {(2, 4), (6,

9)}

Iteration phase
Let B be the collection of cells. If m = Extract(B), then m ∈
B and there does not exist m' ∈ B such that m' ∗ m holds:
m1 ∗ m2 if one of the following holds: (1) m1 has only solid
characters and m2 has at least one non-solid character (2)
m2 has the "-" character and m1 does not, and, (3) m1 and
m2 have d1, d2 > 0 dot characters respectively and d1 <d2.

Further, m1 is ~-compatible with m2 if the last solid char-

acter of m1 is the same as the first solid character of m2.

Further if m1 is ~-compatible with m2, then m = m1 ~ m2 is

the concatenation of m1 and m2 with an overlap at the

common end and start character and m = {(x, y)|(x, l) ∈

}. For example if m1 = ab and m2 = b.d

then m1 is ~-compatible with m2 and m1 ~ m2 = ab.d. How-

ever, m2 is not ~-compatible with m1.

NodeInconsistent(m) is a routine that checks if the new
motif m is non-maximal w.r.t. earlier non-ancestral nodes
by checking the location lists. The procedure is best
described by the pseudocode shown in Table 1. Steps
G:18–19 detect the suffix motifs of already detected max-
imal motifs. Result is the collection of all the maximal
extensible patterns.

A tight time complexity for the procedure is not easy to
come by, however, if we consider M to be the number of
extensible maximal motifs and S to be the size of the out-

 

 


 m ml, y

1 2
,( ) ∈

The evolutionary tree built from complete mammalian mtDNA sequences of 15 speciesFigure 1
The evolutionary tree built from complete mammalian mtDNA sequences of 15 species. [width = 450 pt]tree1.eps
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put – i.e. the sum of the sizes of the motifs and the sizes
of the corresponding location lists – then the time taken
by the algorithm is O(SM log M). In experiments of the
kind described later in the paper, at 3 GHz clock, time
ranged typically from few minutes to half an hour.

Compression by extensible motifs
Traditionally, the design of codebooks used in compres-
sion proceeds from specifications that are either statistical
or syntactic. The quintessential statistical approach is rep-
resented by Huffman codes, in which symbols are ranked
according to their frequencies and then assigned in order
of decreasing probability to longer and longer codewords.
In a syntactic approach, the codebook is built out of pat-
terns that display certain features, e.g., of robustness in the
face of noise, loss of synchronization, etc. The focal point
in these developments is the structure of the codewords.
For instance, a codeword is a pattern w of length m such
that any other codeword must be at a distance of d from
w, the distance being measured in terms of errors of a cer-
tain type. We can have only substitutions in the Hamming
variant, substitutions, insertions and deletions in the Lev-
ensthein variant, and so on. Of course, the two aspects
blend in the final code. With Huffmann codes, for
instance, once the characters are statistically ranked a code
with certain syntactic characteristics, notably, obeying the
prefix property, is built. Likewise, once the codebook of
an error correcting code is designed, the statistics of the
source is taken into account for encoding. However, these

two stages are, as a rule, carried out somewhat independ-
ently.

The notion of a motif that we adopt tightly combines the
structure of the motif pattern, as described by its syntactic
specification, with the statistical measure of its occurrence
count. This supports a notion of saturation that finds nat-
ural use in the dual contexts of structural inference and
compression. As said, this saturation condition mandates
that motifs that could be made more specific without
altering their set of occurrences do not bear interest and
may be discarded.

In this Section, we present lossy off-line data compression
techniques by textual substitution in which the patterns
used in compression are chosen among the extensible
motifs that are found to recur in the textstring with a min-
imum pre-specified frequency. As mentioned, motif dis-
covery and motif-driven parses of various kinds have been
previously introduced and used in [5], however, the
motifs considered in those studies are "rigid".

The transition from rigid to extensible motifs requires a
complete restructuring of the combinatorial and compu-
tational tools for their extraction and implementation.
Specifically, one needs:

• An algorithm for the extraction of flexible motifs.

• A criterion for choosing and encoding the motifs to be
used in compression.

• A new suite of software programs implementing the
whole.

The orchestration of these ingredients are briefly
described next. We regard the motif discovery process as
distributed on two stages, where the first stage unearths
motifs endowed with a certain set of properties and the
second implements them in the compression. The first
part was dealt with in the preceding section. Like with
rigid motifs in [5], the flexible ones presented here may be
restored at the receiver using information about gap fill-
ing, to be transmitted separately. In images, for instance,
a tremendous amount of compression is attained, albeit
with a large loss such as 40% or so, yet simple predictors
in the form of linear interpolation restores more than
95% of the original.

The methods presented here belong to a class of off-line
textual substitution that try to reap through greedy
approximation the benefits of otherwise intractable opti-
mal macro schemes [9]. The specific heuristic followed
here is based on a greedy iterative selection (see e.g., [10])
which consists of identifying and using, at each iteration,

A partial tree of languages using a distance based on com-pression by extensible motifsFigure 2
A partial tree of languages using a distance based on com-
pression by extensible motifs. [width = 280 pt]tree2.eps
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a substring w of the text x such that encoding all instances
of w in x yields the highest possible contraction of x. This
process may be also interpreted as learning a "straight
line" grammar of minimum description length for the
sourcestring, for which we refer to [5,11,12] and refer-
ences therein. Off-line methods are not always practical
and can be computationally imposing even in approxi-
mate variants. They do find use in contexts and applica-
tions, such as mass production of CD-ROMs, backup
archiving, etc. (see, e.g., [13]). Paradigms of steepest
descent approximations have delivered good perform-
ances in practice and also appear to be the best candidates
in terms of the approximation achieved to optimum
descriptor sizes [14].

Our steepest descent paradigm performs a number of
phases consisting each in the selection of the pattern to be
used for compression followed by the actual substitution
and encoding. The process stops when no further com-
pression is achieved. The sequence representation at the
outset is finally pipelined into some of the popular encod-
ers and the best one among the overall scores thus
achieved is retained. Clearly, at any stage it is impossible
to choose the motif on the basis of the actual compression
eventually conveyed by that motif. The decision must be
based on an estimate, that takes in to account the mechan-
ics of encoding. In practice, we estimate at log(i) the
number of bits needed to encode the integer i (we refer to,
e.g., [4] for reasons that legitimate this choice). In one
scheme [10], one eliminates all occurrences of m, and
record in succession m, its length, and the total number of
its occurrences followed by the actual list of such occur-
rences. Letting |m| to denote the length of m, Dm denotes
the number of extensible characters in m, fm the number of
occurrences of m in the textstring, sm the number of char-
acters occupied by the motif m in all its occurrences on s,
|Σ| the cardinality of the alphabet and n the size of the
input string, the compression brought about by m is esti-
mated by subtracting from the sm log |Σ| bits originally
encumbered by this motif on s, the expression |m| log |Σ|
+ log |m| + fmDm log D + fm log n + log fm charged by encod-
ing, thereby obtaining:

G(m) = (sm - |m|) log |Σ| - log |m| - fm(Dm log D + log n) -
log fm

This is accompanied by a loss L(m) represented by the
total number of don't cares introduced by the motif,
expressed as a percentage of the original length. If dm is the
total number of such gaps introduced across all its occur-
rences, this would be: L(m) = dm/sm.

Other encodings are possible (see, e.g., [10]). In one
scheme, for example, every occurrence of the chosen pat-
tern m is substituted by a pointer to a common dictionary

copy, and we need to add one bit to distinguish original
characters from pointers. The original encumbrance
posed by m on the text is in this case (log |Σ| + 1)sm, from
which we subtract |m| log |Σ| + fmDm log D + log |m| +
fm(log r + 1), where r is the size of the dictionary, in itself
a parameter to be either fixed a priori or estimated.
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