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Abstract

Background: In order to compute pattern statistics in computational biology a Markov model is
commonly used to take into account the sequence composition. Usually its parameter must be
estimated. The aim of this paper is to determine how sensitive these statistics are to parameter
estimation, and what are the consequences of this variability on pattern studies (finding the most
over-represented words in a genome, the most significant common words to a set of sequences,...).

Results: In the particular case where pattern statistics (overlap counting only) computed through
binomial approximations we use the delta-method to give an explicit expression of o, the standard
deviation of a pattern statistic. This result is validated using simulations and a simple pattern study

is also considered.

Conclusion: We establish that the use of high order Markov model could easily lead to major
mistakes due to the high sensitivity of pattern statistics to parameter estimation.

Background

In order to study pattern occurrences in biological
sequences, simple frequencies are not relevant in most
cases because of pattern overlapping structure as well as
composition bias in the sequences. A common worka-
round consists to compute the significance of an observa-
tion assuming the sequence X = X, ... X€ over the finite

alphabet A . (size k) is generated according to an order m
> 1 homogeneous, stationary and ergodic Markov model.
Let 7 (size km+1) defined by

ﬁ(w' a) = (Xm+1 = a|X1"'Xm = w)
(1)

V(w, a)e Amx A

be the parameter of this Markov model, I its transition
matrix (note that we have I1 = 7z only if m = 1) and x its
stationary distribution (defined by u x I = ).

We then introduce the pattern statistic defined by

:{_loglop(NZNobs) if[\]obs ZE[N] (2)
10810 P(N < Nobs) ifNvobs < E[N]

where N is the random number of overlapping occur-
rences (i. e. X = aababaaba contains three overlapping
occurrences of aba but only two non-overlapping ones) of
a given fixed pattern on the random sequence X and N
is an observation.

obs
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When 7 is known (and hence p), several statistical meth-
ods are available to compute S: exact computations [1-4],
Gaussian [5,6], binomial [7,8], compound Poisson [9-11]
or large deviations approximations [12]. But in general,
the parameter 7 is not available and must be estimated.
Let us denote by N, (resp. N, ) the (overlap) frequencies of
all words of size m (resp. m + 1) in the sequence Y =Y; ...
Y,, then the Maximum-Likelihood Estimator (MLE) of ris
given by

V(w,a) e A"XA (3)

and the MLE of x (as a function of 7) is therefore defined
by i x I1 = i where II is the transition matrix associ-

atedto 7
We introduce now the following estimators

No (w)
n-m+1

and 7y(w,a) = %

which are known to be asymptotically equivalent with the
MLE when n is large.

un(w) = V(w,a) e A" XA (4)

The quality of parameter estimation depends both on the
number of parameters to estimate (k™+! for an order m
Markov model) and of the length () of the homogeneous
sequence used for their estimation. When the same
sequence (or set of sequences) is used both for observed
frequencies and parameter estimation, m should not be
greater than h - 2 for a pattern of length h (as else, the
observed frequency of the pattern will be included in the
model). As literature often suggests to use the highest pos-
sible order, it is hence common to consider m = 6 or more
(for a DNA pattern of size h > 8). Moreover, because of the
homogeneity assumption of the model, the considered
genomes have often to be segmented first. As a result, the
sequences length used for parameter estimations are often
dramatically reduced by such segmentation (e. g. n = 105
to n = 10° at the very best for DNA sequences). It is hence
quite common to encounter high order Markov models
estimated on rather short sequences which could result in
high sensitivity to parameter estimation.

Considering that Y is generated through a Markov model
of parameter 7, the main goal of this paper is to study the
distribution of Sy, the statistic S computed using the esti-
mators g and 7z, and the consequences of its variability
in projects using pattern statistics. We first present in
details how the delta-method can be used to get a Gaus-
sian approximation for the distribution of Sy (using a
binomial approximation to compute the pattern statis-
tics). Then these approximations are validated through
simulations and, at last, we consider a classical pattern
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study (finding the most over-represented patterns of a
given size) and we evaluate the detrimental effect of
parameter estimations both in terms of true positive rate
and rank accordance.

Materials and methods

Distribution of N = (N, N))

As the estimators defined in (4) are expressed as functions
of Ny and N, we first study their distribution. Using a
Gaussian approximation, we have

N E C C

L[ o} N [ oH 0,0 0,1} )
N; E; [|Co Cia
N E C

.. . . d;
where, fori, j e {0, 1}, E; e RY , and Ci'je R% x R%
with d; = k"+i. One can note that G, ;and C, ; are symmet-
ric, and 1 (C, o) = Gy ; (where tis the matrix transpose oper-
ator).

In the stationary case, exact expression of E and C can be
computed according to [5].

Expectation is simply given Vw € A ™ by

Ey(w) = (n-m+1) py(w)  E, (wa) = (n-m) u(w)ll(w, a)
V(w,a)e Amx A (6)

In order to give more fluidity to this paper, the expression
of the covariance matrix C have been moved in appendix
A. Let us remark, before going forward that substituting N
by E in (4) immediately gives

1
= d =[1-—— 7
He = H - and e ( n—m+l)n ( )

Delta method

Let us start with a simple case. We consider a single pattern
which is over-represented (seen more than expected) so
we have

S =—logio FF(N) with FF(N)£P, . (N2 Ngp) (8)

NN

where the function F* also depends on the sequence
length € and the considered pattern.

If F+is differentiate, the delta-method (a simple first order
Taylor expansion around N = E, see [13]) provides the fol-
lowing approximation:
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"(N-E)VF'(E)
In(10)E™ (E)

and hence, using (7) we have

Sy = —logjo F'(E) -

_ "(N-E)VF'(E)

N=S In(10)F* (E)

(10)

for n large enough. The distribution of S is therefore
approximated by
LS=N(Sa) (11

with

.- J 'VF* (E)xCx VF* (E)
- In(10)F* (E)

(12)

In consequence, computing orequires both to compute C
(done in appendix A) and VF+ (E).

Single pattern

The exact expression of F*is computable through many
different methods [1-4] but is too much complicated to
derive explicitly VF+. To overcome this problem, we pro-
pose to consider an approximation of F+. As said in intro-
duction, many kind of approximations are available
(Gaussian, binomial, compound Poisson or large devia-
tions). In this paper, we have chosen to use a binomial
approximation as it provides an expression which is ana-
lytically differentiable and is known to be a good heuristic
to the problem [8].

For a single non-degenerate pattern (i.e. a simple word) W
=w, ... w, (w;e A)withh>m -1 we first denote by
P(N) = gy (wy .. wy,) % 7o (Wy oo Wy Wy q) X oo x g (W,
Wy, wy)  (13)

the probability for W to occur at a given position in the
sequence and then we get

ﬂ(P(N)'Nobsflh — Nobs +1)

F(N) = LB PIND) = Nopy) = = mabes he Sabss

(14)

where B denotes the binomial distribution, with €, = € -

h + 1 and where the B functions (complete and incom-
plete) and their relation to the binomial cumulative distri-
bution function are described in appendix B.

Note that if we consider non-overlapping occurrences
instead of overlapping ones, we can still use a binomial

http://www.almob.org/content/1/1/17

approximation for the distribution of N, but the expres-
sion of P(N) is more complicated as it involves the auto-
correlation polynome of the pattern [14]. This point is not
developed in this paper.

Replacing x4 and 7 by their expression easily gives

Haeﬂ N, (wa)Al (wa)
No(w)"o®)

prelll|
n-m+1 we A"
where A, (wa) counts occurrences of the word wa in W =
w; ... w,and A, (w) counts occurrences of the word w in w,
... wy,_;. Note that in the particular case where h =m - 1, all
Ay (w) are null and we simply get (n-m +1) x P (N) = N,
(W).

P(N) = (15)

Using the derivative properties of the incomplete beta
function (see appendix B for more details) we hence get

P(N)Nobs 71 (1 = p(N))“n=Nobs
B(Nobeéh —Nobs +1)

so all we need is to compute VP(N).

VFY(N) = x VP(N) (16)

Forall (w,a) e A™x A we have

PN) __Ao(w)

MNo(w)  No(w) < 0V (17)

and

oP(N) _ Ay(wa)
ON;(w) Ny (wa)

X P(N) (18)
If we denote by

P=y(w..w,) xmw(w, ... w,, Wy,,)* ..
wy)  (19)

X ﬂ'(wh_m wh_l,

the true probability for W to occur at a given position in
the sequence X then we get, using (7) in (13), that

1 h—m
P(E) = 1-—— =
( ) px( n—m+1) P

for n large enough. We hence get

(_
Vit gy = LD T
ﬁ(Nobs'fh_Nobs‘i'l)

where ‘G = ['G, 'G, ] is defined by

_Ag(w)
Eq(w)

A (wa)
E;(wa)

Go(w) = and G;(wa)=-

(22)
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Using equation (12) we finally get

c=Q" 'GxCxG (23)
where
4 pNobs (l_p)eh_Nobs

= 24

In(10)B(p, Nobs {5 = Nobs +1) (24)
and then, a computation of ois possible by plug-in. With-
out considering the computation of E and C, the complex-
ity of this approach is O(h) (where h is the size of the
pattern).

When a degenerate pattern (finite set of words) is consid-
ered instead of a single word, it is easy to adapt this
method by summing the contribution p of each word
belonging to the pattern. This point is left to the reader.

Under-represented pattern
In the case of an under-represented pattern we have

Sn =logio FT(N) with FT(N)2P, - (N < Nop). (25)

Using a binomial approximation we get

_ B (P(N),Nopbs +1, 05 = Nobs)

B(Nobs +1,Lp = Nobs)
and, by the same method than in the over-represented
case we finally have

0 =Q v 'GxCxG

where

F7(N) = P(B(¢, P(N)) < Nobs)

(26)

(27)

Nobs"'1 - (h_Nobs_1
g - P (28)
In(10)B™ (P, Nops + 1L, = Nops)
Two distinct patterns
We consider now two patterns V and W instead of one
and want to study the joint distribution of Sy (V) and Sy
(W) their corresponding pattern statistics.

With a similar argument as in section "delta method", it is
easy to show that

Sn(V) S(V) oy ovw
L[[SN(W)]J:N[[s(w)]rlgvrw O“%\/ ]] (29)

where oy, (resp. oy,) is the standard deviation ofor the pat-
tern V (resp. W) and where
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_ ‘VE7 (E)x Cx VE],(E) (30)
In(10)F (E)xIn(10)F, (E)

where

+ if pattern V (resp. W) is over-represented

(31)

And after using results of sections "single pattern" and
"under-represented pattern" we finally get

€ (resp. ) = {

— if pattern V (resp. W) is unter-represented’

aV,W=(Q$QgV)><( 'VGy XCxVGyy ) (32)

where Qf, (resp. W) and G, (resp. W) are the constant Q
(Q*and Q) and the vector G for the pattern V (resp. W).

Simulations
It is also possible to study the empirical distribution of a
Sy (for one or more patterns) through simulations.

In order to do so, we first draw M independent sequences
vi=Y/ . Y,{ using an order m stationary Markov model

of parameters 7. Complexity of this step is O(M x n).

For each j we get the frequencies Ni = ( NJ, N{ ) (with com-

plexity O(n) for each sequence) of the words of size m and

m + 1 in the sequence Y/ and use it to compute ' = S

(exact value or approximation). Complexity here depends
on the statistical method used to compute S/ (e.g. O(h)
using a binomial approximation).

We now have a M - sample S1, ..., SM of S from which we
can easily estimate oand thus, valid or invalid the approx-
imation through the delta-method.

When used with large value of n (e.g. several millions or
more), the complexity of this approach is slowed by the
drawn of the sequences Y;. It is therefore possible to
improve the method by simulating directly the frequen-
cies N through (5). As this approximation has a very small
impact on the distribution of S (data not shown) it may
dramatically speed-up the computations when consider-
ing large n or M. It is nevertheless important to point out
that drawing a Gaussian vector size L requires to precom-
pute the Choleski decomposition of its covariance matrix
which could be a limiting factor when considering large L.
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Results and discussion
Validation
Simple case

Let us start with a simple case: a binary alphabet A = {a,
b} (k = 2) with an order m = 1 Markov model

03 0.7
T =

0.6 04
which stationary distribution is 4 = (6/13,7/13) and we
work on a sequence of length n = 10 000.

(33)

The first thing to do is to compute E and C (see appendix
A for details).

Now, we consider the pattern W = ababa occurring N, =
1221 times in a sequence of length € = n = 10 000. We
have

p =p(a) I (a,b)?II (b,a)?= 8.142 x 102 (34)

so E [N(ababa)] = (€ - 4)p = 813.8 = 0.66 x N, and
hence the pattern is over-represented. Its statistic (using
binomial approximation) is

S =—log;o P(B({ —5+1,p) = Nyps) = 43.74285 (35)

We have

Nops—1 (—4—N,
p obs (1 — p) obs

Q+ - =193.3258 (36)
In(10)B(p, Nops, £ =3 — Nops)

and

= L 2 |_[_ 5 By

GO_[Eo(a\) Eo(b)] [2~17xl0 3.71x10 } (37)

and

(~ _ 2 2 B . .

G1—[0 E;(ab) E,(ba) 0]—[0 6.19x1077  6.19x10 0:| (38)

Finally, we get

o =Q'V 'GxCxG =6.1020774

As our pattern statistics is the decimal logarithm of the p-
value, o= 6 means that the ratio of the estimated p-value

over the true one could easily range from 10-12 (10-2x 9) to
1012 (102 * 2) which is huge.

(39)

We can see on fig. 1 the empirical distribution of Sy com-
pared to the theoretical distribution. Even if the two dis-
tributions are closely related, an adjustment test
(Kolmogorov-Smirnov) shows that they are different.

http://www.almob.org/content/1/1/17

In the fig. 2 we compare o to its estimator & for several
values of N ;.. We can see that our theoretical values of &

fits very well to the empirical ones.

The equation (39) gives an explicit expression of ¢ as a
product of two terms. Once the pattern and the true
parameter 7 are fixed, the first term (Q) depends only on
€ and N, while the second one only depends on the
length n of the sequence used for the parameter estima-
tion (see appendix C for an explicit expression of ¢in the
particular case of an order 0 Markov model).

To study the variations of o(n) as a function of n we there-
fore need to study G(n) and C(n). Using equations (6)
and (22) we get that

E(n)=O(n) and G(n)= o(% ) (40)

Using equations (57) and (58) in appendix A we also get
that C=M + O + tEE with

M(n) = O(n?) and O(n) = O(n) (41)
so finally
- 4 B
o(n)=6(n)=Q" x /A+— (42)
n
for large n, with
A= lim 'G(C-0)G (43)
n—>-oo
and
B= lim nx '‘GOG (44)

N—>+oo

We can see on fig. 3 that & is not a very good approxima-
tion of ofor small n, but, as the approximation is far easier
to compute (and trivial to invert) than the true value, this
can be useful when we need to compute a minimum
length 7 to obtain a given o

We also see on the same figure that o grows rapidly when
n decreases. For example, we get o = 20 for n = 5000
(while equation (35) gives S = 264.4).

As we consider here a binary alphabet (k = 2) and a first
order Markov model (m = 1) we have only k"(k - 1) = 2
parameters to estimate with a sample of size n = 5000 (so
we have 2500 sample per parameter). Although this situ-
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Empirical and theoretical distributions of S.A sample of size 10 000 have been used to get the empirical distribution.
The solid line represents the density of N (S, 62). The adjustment test of Kolmogorov-Smirnov give D = 0.023 which corre-
sponds to a p-value of p = 5.3 x 10-5. N, = 1221 and n = € = 10 000.

ation seems quite comfortable, the sensitivity to parame-
ter estimation appears in fact to be so large that we could
have a factor 1040 between the true p-value and its esti-
mate.

Practical case

We have seen with our first example that our approxima-
tion works very well in a simple case. Will this hold with
more practical cases?

To answer this question, let us consider the following
experimental design:

¢ one pattern: W = acgtacgt;

e two genomes: Escherichia coli K12 (€ =n=4639675) and
Mycoplasma genitalium (€ = n = 580076);

o five Markov orders: m = 1 to m = 5 (larger m are not con-
sidered since the computation of C becomes then intrac-
table).

As the sequence lengths and compositions of the two con-
sidered genomes differ a lot, we have to take a different
value of N, for each organism: N, = 30 for M. genital-
ium and N, = 150 for E. coli. Proceeding as indicated in
section "simulations", we use the algorithm 1 for each

experiment.

Algorithm 1 simulations for one experiment in the prac-
tical case

1: estimate the order m parameter 7 (and ) from the orig-
inal sequence. Although these parameters are estimated,
they are considered as the true parameters;

2: compute S = -log,, (N = N_,.);
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Comparison of cand G . G is estimated with a sample of size | 000 and N takes its values from 900 to | 900. The solid

line represents the theoretical values and the circles the empirical ones. The statistic S is used on the x-axis. n = € = 10 000.

3: compute o using approximation (23)
4:forj=1..1000do

5: draw a random sequence Y = Y, ... Y, according to and
order m stationary Markov model of parameter 7;

6: compute N the frequency vector of all size m and size m
+ 1words inY;

7: compute S = Sy = -log;, (N = N_...);

8: end for

9: compute S (resp. G ) the mean (resp. standard devia-
tion) of the sample S1,..., Si.

We can see on table 1 the results for E. coli. For each
Markov model considered, our approximation of ois very
close to the empiric ones and, as with figure 1, the Gaus-
sian distribution fit well to the empiric one (data not

shown). Table 2 shows the same behaviour with M. geni-
talium except for m = 5 where & differs slightly more than
in the other cases from its theoretical value. To understand
this phenomenon, let us first recall the expression of P(N)
for m = 5 using equation (15):

N; (agctac) x N (gctacg) x N (ctacgt)

P(N) =
(¢ —m+1)x Ny(gctac) x Ng(ctacg)

and as (N (agctac) =0) = 2.26 x 10, (N, (gctacg) = 0) =
1.35 x 10-1and (N, (ctacgt) = 0) = 1.24 x 10* we will have
P(N) = 0 roughly 14% of the time. This happened 123
times in our sample of size 1 000, each time preventing to
compute Sy. The sample is hence biased and S and 6 are
therefore not accurate.

What happen now if we use another statistical method to
compute the pattern statistics. As the binomial approxi-
mation is supposed to be close to the exact solution, we
expect the standard deviation obtained with other statisti-
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Comparison of o(n) and G (n). The circles reprensent o(n) and the solid line & (n). n_, = 10¢ have been used to compute

the value of A and B. N_, = 1221 and € = 10 000.

cal methods to remain close to o. In table 3, we compare
the empirical results using binomial approximations (like
above) but also compound Poisson or large deviations
approximations. Both empirical means and standard
deviations are close to the theoretical ones thus validating
the method.

Choice of a Markov model order

Through the computation of o'we can measure the sensi-
tivity of pattern statistics to parameter estimations. A very
natural question is then, how this variability could affect
a pattern statistic study, and, as this variability grows with
the Markov model order, how to choose this parameter.

Table I: Comparison of theoretical and empirical pattern statistic mean and standard deviation on Escherichia coli K12.

m S o
S G
| 35.57 0.28 35.57 0.27
2 31.61 0.49 31.60 0.50
3 46.75 1.04 46.77 1.03
4 45.33 1.74 45.32 1.81
5 62.27 3.45 62.36 3.34

We consider the pattern W = acgtacgt with N, = 150. The sequence length is € = 4639675, we use an order m Markov model and a sample of size

M =1000.
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Table 2: Comparison of theoretical and empirical pattern statistic mean and standard deviation on Mycoplasma genitalium.

m S o
6
| 42.48 0.38 42.47 0.40
2 44.62 0.78 44.62 0.81
3 55.96 1.49 56.02 1.52
4 55.06 3.39 55.48 3.48
5 56.49 10.35 57.21%* 9.09*

We consider the pattern W = acgtacgt with N,

obs

= 30. The sequence length is € = 580 076, we use an order m Markov model and a sample of size

M =1 000. (*) for 123 terms in the sample we got P (N) = 0 and hence, Sp was not computed.

We propose here to consider the case of a very simple pat-
tern study: we want to find the 100 most over-represented
octamers (DNA words of size 8) in a given genome.
Assuming the true parameter 7 (and hence ) is known,
we can compute REF = {W,,.., W,,,}, the list of these
words (ordered by decreasing statistics, so that the most
over-represented one is the first one).

For each estimates (I and 7, we can compute REF the
100 most over-represented octamers in the genome using

the statistic S and compare it to the truth. In order to do
so, we first compute the true positive rate (TP rate) defined

by the rate of common words in REF and REF, and the
rank accordance rate (RA rate) defined by the Kendall's

tau [[15], Chapter 13] between S and S ranks of { REF U
REF}. Such statistic is in the range [-1,1] and has the value
1 for the complete rank accordance and the value -1 for
the complete rank discordance.

As in the section "practical case", we consider two
genomes: Escherichia coli K12 (€ = n = 4639675) and Myc-
oplasma genitalium (€ = n = 580076). For each Markov
model order m from 1 to 6, we estimate 7 on the sequence
(by maximum of likelihood), compute the REF list and

then draw a sample of REF from which we get estimates
for the expectation of TP and RA rates.

Results are given in tables 4 and 5. We can see that, sur-
prisingly, the TP rate could be very low even for long
genome such as E. coli when high order Markov model (m
= 6) are used. Of course, these rates are even worse on M.
genitalium whose genome is ten times smaller than the
first one. It is also clear that the RA rate is more affected by
the variability induced by parameter estimation than the
TP rate.

Based on these results, we conclude that our pattern study
requires a sample size per free parameter of at least a few
thousands if we want reliable results. In our examples this
has for consequence that the Markov order should not be
greater than 4 (or 5 at the very most) for E. coli and 3 (or
4 at the very most) on M. genitalium without resulting in
important errors.

Conclusion
The delta-method allows us to approximate the distribu-

tion of S by a Gaussian distribution. This first requires to
compute the expectation and covariance matrix of fre-
quencies and then to study the derivative of a function
which is specific of the method used to compute the pat-
tern statistics. In the case of the binomial approximations,

we have found an explicit expression of o the standard

deviation of S.
It is clear that our approximation of o using the delta-

method relies one two major assumptions: 1) the distri-
bution of N is Gaussian; 2) F* is regular enough (e.g. not

Table 3: Comparison of theoretical and empirical pattern statistics mean and deviation on Mycoplasma genitalium.

theoretical binomial

compound Poisson large deviations

55.96 1.49 56.05 1.47

o}
%]
(o}

55.42 1.45 54.27 1.43

We consider the pattern W = acgtacgt with N,

= 30. The sequence length is € = 580076, we use an order m = 3 Markov model and a sample of

size M = | 000. The pattern statistics are computed (from left to right) through binomial, compound Poisson or large deviations approximations.
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Table 4: Mean true positive rate and rank accordance rate in Escherichia coli K12.

Markov order | 2 3 4 5 6
TP rate 99.0% 98.0% 97.9% 94.4% 82.1% 47.6%
RA rate 99.0% 95.5% 91.5% 83.9% 68.0% 36.5%

x 103 383.33 95.83 23.96 5.99 1.50 0.37

Both quantities are estimated with | 000 simulations. We consider the | 00 most over-represented octamers, the sequence length is £ = 4639675.
The last row gives the sample size per free parameter (length n of the sequence divided by the number k™(k - |) of parameters).

too steep) around E. When m grows, E closes to the
boundary of the definition range of F* hence degrading
assumption 2. Moreover, it is well known that Gaussian
approximations for word frequencies become weaker
when the expected numbers of their occurrences become
smaller, thus degrading assumption 1. It is therefore obvi-
ous that our approximation of owill get less and less reli-
able as m grows.

However, the approximation of ¢ has been validated
through simulations and appears to be very reliable (even
for m = 5 or 6). As pattern statistics computed through
binomial approximations are close to the exact statistics
[8], the value of oshould not differ a lot when another sta-
tistical method is used. We have compared our approxi-
mations to the empiric distribution obtained using
compound Poisson and large deviations approximations
and, as expected, our approximations remains quite relia-
ble even for these statistical methods.

The variability due to parameter estimation is of course
related to the Markov model order m and to the size k of
the alphabet (as we have k™+1 parameters for this model)
and to the length n of the sequence used for this estima-
tion. For example, considering an order m = 6 model with
n = 4639675 (Escherichia coli K12 complete genome)
requires to estimate 3 x 46 = 4096 free parameters which
results roughly in 400 observation per free parameter.
Although this situation seems quite comfortable, we have
seen with our simulations that it leads an unacceptable
variability for pattern statistics.

As literature often advices to use the highest possible
Markov order for a given pattern problem (which means
m = h - 2 for pattern of size h) it is easy to understand that
such a practice could have very detrimental effects on the

computed statistics unless huge data are available for esti-
mation purpose. Even if we consider the more reasonable
attitude to choose m using the classical framework of
model selection (e.g. using the Akaike Information Crite-
rion - AIC -) we get m = 5 for Mycoplasma genitalium and
m = 6 for Escherichia coli K12 hence resulting in both cases
in the same catastrophic results in terms of false positive
and even worse ones in terms of ranking.

Moreover, we assumed here that our model was homoge-
neous all along the considered sequences. This is obvi-
ously completely false when complete genomes are
considered. So it is more likely that the sample size n
would be far smaller than a million on classical pattern
studies (even of human genomes for example). As a result,
the variability we pointed out in this paper will have a
considerable detrimental effect on most studies unless the
Markov order is carefully set.

In order to do so, we advice to compute our approxima-
tion of oeach time a pattern statistic is produced and then
to evaluate, either by simulation (like in this paper) or by
a theoretical work the impact of this variability on the
considered study.
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Appendix A

We give here the expression of the covariance matrix C
introduced in section "distribution of N = (N, N;)". The
sequence Y (of length n) is generated by an homogeneous,
stationary and ergodic order m Markov model of parame-
ter  and stationary distribution g We want to compute
the covariance of the vector N of random frequencies of
size m and m + 1 words.

Table 5: Mean true positive rate and rank accordance rate in Mycoplasma genitalium.

Markov order | 2 3 4 5 6
TP rate 95.5% 93.6% 90.4% 81.8% 66.0% 25.0%
RA rate 92.6% 85.4% 79.8% 66.5% 45.1% 11.0%

x |03 48.33 12.08 3.02 0.76 0.19 0.05

Both quantities are estimated with | 000 simulations. We consider the | 00 most over-represented octamers, the sequence length is ¢ = 580076.
The last row gives the sample size per free parameter (length n of the sequence divided by the number k™(k - |) of parameters).
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For any word w (of size h,,), we introduce the following
notation for h,<i<n

Ii(w) = ]I{w end in positioni} = ]I{Yii—h L =w} (45)

where Yij =Y;... Y;foralli<j. If h, > m, we denote by

m m h—1
pw) = p(wy N (wy”, Wy ) Ty, —,,wp)
the probability to see one occurrence of w at a given posi-
tion in the sequence. At last, if we consider another word
v (of size h, = m) and if h,, = m, we denote by

(46)

Ms(v,w)= Y, ploaw)

xe A°

(47)

the probability to see occurrences of v and w separated by
a gap of length .

For any words v an w (to simplify, we suppose that h,> h,,)
then, forall e Z and

max(h,, h, - 8) <i<min(n, n - §) we have
B (1 (v) Iis (w)] = Ds (v, w) ~ (48)

which do not depend on i.

It is therefore easy to show that

ENONw)] =Y S Ds(v,w) (49)
i=h, 8=h,~i
n—h,
= D, NsDs(v,w) (50)
6=h,—n

= M(v,w) + O(v, m)

(51)

where the main part (2n - h, - h,, + 2 terms) is given by

n—h, n—h,
M(vw)= Y N_sD_s(v.w)+ Y, NgDs(v,w) (52)
5=h, 5=h,

and the overlapping part (h, + h,, - 1 terms) by

hy—1

O(v,w) = z NgDg (v, w)
6=—h,+1

(53)

and with

http://www.almob.org/content/1/1/17

n—h,+1+8 o€ lh, —nh,—hy]

Ng =<n—h, +1 é€lh,—h,,0| (54)
n—h,+1-6 0¢€l0,n—h,]

As we have

Clv,w)=M (v, w)+O (v, w)-E (v) E (w) (55)

the problem is hence to compute M and O for all pairs of
size m or m + 1 words. In order to simplify, we will just
treat here the case of a pair of size m words (other cases
can be derived from this special case).

For the main part we obtain

Mw)= 3 N_su()lTs i (1,0)
d=m (56)

n—-m
+3 NS0T (v,w)
é=m
(2n - 2m + 2 terms). As P, (v, w) quickly converges toward
H(w) when k grows (convergence speed is given by A*
where A is the magnitude of the second eigenvalue of the
transition matrix IT). So there exists a rank r 2 m such as

M(v,w) = p(v)u(w) Y (N_5 +Nj)
o=r
=1
+ 2, Nosu(w)s_q (w,v)
5=m
r—1
+ Y Ns () g1 (v,w0)

o=m

(57)
which has only 27 - 2m + 1 terms.
And for the overlapping part we get

O(v,w) = No X u(v) X Ly

m—1

+ 3 N_sxpwvp_s:)XI ms m

52‘,:1 ) P( m5+1) {V1 6:w1+6

m—1

+ Y Nsxp(wll s XI5 i o 58
TN )T s (58)

which has 2m + 1 terms.

So the overall complexity for the computation of one term
of C is hence O(r) where the value of r is directly con-
nected to the magnitude A of the second eigenvalue of the
transition matrix.
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In the particular case of an order one Markov model (m =
1), we give here the complete expressions of M and O.

Foralla, b,¢c,de A, wehave

M(a,b) = (n 7 +1)(n - r)u(a)u(b)

=1
+ (n-8)(u@N° (b,0) + u(@)11° (a,b) (59)
5=1
O (a, b)=nu(a) Iy,_,; (60)
%%%?:m—ﬂm—w4www@)
+r§(n—6 —1)(,[1(6)1_[6 (c,a)+ u(a)1® (b,c)) (61)
6=1
O(ab,c)
(ah) (n=1)p(a) Lgg=cy +Lgp=c}) (62)
M(ab, cd)

WI—M =(m-r-1)(n-r-2)u(a)u(c)

+§ (n=8 - 2)( u(e)1° (d, @)+ (@)1 (b,0)) (63)
6=1

O(ab,cd

) == D@

+(n = 2)T1(c, d) ( () g=gy + () Tgp—y ) (64)

With the example given in section "validation" we get for
the expectation

E) =[4615.4 5384.6] (65)

and

E! =[1384.53230.4 3230.4 2153.6]  (66)

The magnitude of the second eigenvalue of IT is A = 0.3,
then rank r = 19 give a relative error < 10 -10and we get for
the covariance

1338.28 —1338.28
0,0 = (67)
—-1338.28 1338.28
11469 1912 1912 -1529.2
Clo=| 11469 —1912 -1912 1529.2 (68)

and

http://www.almob.org/content/1/1/17

1536.8 -390.0 -390.0 -756.9
-390.0 581.2 581.0 -772.2
G = (69)
-390.0 581.0 581.2 -772.2
-756.9 -=772.2 -772.2 23014
Appendix B
The beta function is defined by
1 4 _
Blab)=[ " a0 (70)

for all a4, b > 0. The incomplete beta function for all x €
[0,1] is then defined by

B(x,a,b) = j;t“_l -0 ae (71)
and

B~ (x,a,b) = B(a,b) - B(x,a,b)
= ﬂ Ry B L

(72)
(73)

Using a continued fraction representation, these functions
can be quickly numerically evaluated in O(/max(a,b) )
in the worst case [15, Chapter 6].

A great interest of this function is that it is connected to
the cumulative distribution function of a binomial distri-
bution by the following relation:

P(B(n,p) = k) = LA

Bll,n—k+1) (74)

with (n, k) e * x,0<k<nandpe [01].

Finally, let us remark that the incomplete beta function is
differentiable in x and that

Bx,a.b) _ a1y (75)
dx

Appendix C

We give here the complete expression of o for a single pat-

tern in the special case of an order m = 0 homogeneous

Markov model of parameter z.

The MLE of y is given by
N

uy =—+ (76)
n

where N is the frequency of all letters.
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A Gaussian approximation gives
L(N)=N (E,Cy) (77)
with E, =nuand, foralla, be A,

Cyi (4, b) =t (a) 1~ nu(a) x nu(b) ~ (78)

We have also

P(N) = = T Ny (@)@ (79)
aeA

which implies foralla e A that

P(N) _ My(@)

= P(N) (80)
oN;(a) Ni(a)
Gy(a)
So finally we get
O-:Q tGlxcleGl (81)

where Q is either defined by equation (24) if the pattern
is over-represented or by equation (28) if under-repre-
sented.
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