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Abstract
Background: Bifurcation analysis has proven to be a powerful method for understanding the
qualitative behavior of gene regulatory networks. In addition to the more traditional forward
problem of determining the mapping from parameter space to the space of model behavior, the
inverse problem of determining model parameters to result in certain desired properties of the
bifurcation diagram provides an attractive methodology for addressing important biological
problems. These include understanding how the robustness of qualitative behavior arises from
system design as well as providing a way to engineer biological networks with qualitative properties.

Results: We demonstrate that certain inverse bifurcation problems of biological interest may be
cast as optimization problems involving minimal distances of reference parameter sets to
bifurcation manifolds. This formulation allows for an iterative solution procedure based on
performing a sequence of eigen-system computations and one-parameter continuations of
solutions, the latter being a standard capability in existing numerical bifurcation software. As
applications of the proposed method, we show that the problem of maximizing regions of a given
qualitative behavior as well as the reverse engineering of bistable gene switches can be modelled
and efficiently solved.

1 Background
The use of mathematical models provides tools for the
analysis of complex molecular interactions aiming at an
understanding of processes occurring in living cells. For
many problems in cellular control, stochastic effects and
time-delays can be ignored and systems of first-order ordi-
nary differential equations (ODEs) can adequately model
the underlying processes. Denoting by x and p the bio-
chemical concentrations and parameters, respectively, the
instantaneous change in x is described by the vector field f:

 = f(x, p).  (1)

In the study of such systems, an important goal is to
understand how the observed physiological behavior
arises out of gene network topology and parameters p.
Some of these questions may be studied via examining the
bifurcation manifolds Σ of the ODE system, which partition
the parameter space into regions of different qualitative
behavior (see e.g., [1] for a general overview to bifurcation
theory). From ODE models and measured parameters, the
forward problem of computing the bifurcation diagram has
contributed significantly towards elucidating the complex
mechanisms underlying cellular processes. For instance,
mathematical and symbolic bifurcation analysis has led to
an understanding of the possible dynamical behaviors

Published: 21 July 2006

Algorithms for Molecular Biology 2006, 1:11 doi:10.1186/1748-7188-1-11

Received: 21 June 2006
Accepted: 21 July 2006

This article is available from: http://www.almob.org/content/1/1/11

© 2006 Lu et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

x

Page 1 of 16
(page number not for citation purposes)

http://www.almob.org/content/1/1/11
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16859561
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Algorithms for Molecular Biology 2006, 1:11 http://www.almob.org/content/1/1/11
that may arise out of simple gene systems (for a mono-
graph, see [2], examples of more recent papers dealing
with natural, designed, and model systems are [3-7]). For
cell cycle models, bifurcation diagrams have given biolo-
gists a systems-level perspective of the roles played by the
various constituent modules, as well as providing the abil-
ity to predict the behavior of mutant cells [8,9]. The desire
to locate regions in parameter space exhibiting interesting
dynamics has led to the development of computational
tools for the automatic discovery of bifurcation sets [10].

In contrast, inverse problems have only recently attracted
attention in biology as a way to unravel the workings of
cellular mechanisms. In inverse problems one looks for
causes for observed or desired effects [11]. Mathemati-
cally, such problems are typically ill-posed, in particular
unstable; special mathematical techniques, called "regu-
larization methods", have to be used to cope with this ill-
posedness. Many variational and iterative regularization
techniques have been developed over the years and
applied to a variety of problems in science, engineering
and finance (see [11] and some references quoted there,
and [12]).

In the current context of cell biology, one would like to
address problems such as: which parameter configura-
tions lead to an observed qualitative behaviour of the sys-
tem ("identification")? How can one introduce a certain
qualitative behaviour into the system via parameter varia-
tions ("design")? We summarize such problems under the
name of inverse bifurcation problems, where the task is to
map the space of bifurcation diagrams back to the space
of parameters. In particular, we consider inverse bifurca-
tion problems of two types: identification and design. For
the former, one would like to infer parameter values from
observed bifurcation diagrams and hence the issue of
uniqueness is typically of concern. For the latter, one is
interested in parameter values that produce the desired
outcome, hence uniqueness is not an issue. The notion of
"inverse bifurcation" was first introduced into biology in
[13]; more recently, another inverse bifurcation problem
from mathematical ecology was studied in [14] by integral
equation methods. These papers are concerned with the
existence and uniqueness of nonlinear terms in equations
realizing prescribed bifurcation diagrams and use analyti-
cal methods. In contrast, given the size and complexity of
gene networks, we take a computational approach in
addressing problems of inverse bifurcation. In this paper,
we consider problems of moderate size for which the ill-
posedness is not yet a crucial issue. Since ill-posedness
increases with dimension, a major issue for larger prob-
lems will be to use appropriate regularization techniques.

For the design type of inverse bifurcation problems, there
exists previous work in the engineering literature: The dis-

tance to bifurcation manifolds has been introduced to
quantify the "parametric robustness" of system designs in
[15]; in the context of design of chemical processes, opti-
mization problems with constraints involving distance to
bifurcation manifolds have been treated in [16]. For a
recent review see [17]. For biological applications as we
have them in mind, this issue of parametric robustness is
also important. In addition, other geometric properties of
the bifurcation diagram are of interest. These include the
size of the parameter region resulting in bistability of solu-
tions and the parametric distance between regions of dif-
ferent qualitative behavior. We will develop methodolgies
by which inverse bifurcation problems involving the opti-
mization of such quantities can be solved.

In this paper, we show the applicability of our inverse
bifurcation algorithms to low dimensional gene systems.
We formulate the inverse problems as constrained optimi-
zation problems, whose objective function and con-
straints involve geometric properties of bifurcation
diagrams. We demonstrate that these problems can be
solved efficiently by applying gradient-based nonlinear
optimization algorithms in combination with one-
parameter continuation methods to locate bifurcation
points. The latter is a standard capability provided by
existing bifurcation analysis software (see [1] for refer-
ences to state-of-the-art numerical implementations).

2 Inverse bifurcation analysis
The ODE model (1) defines a mathematical relationship
between the parameters p and the time course of biochem-
ical concentrations, x(t). Of the set of all parameters, some
describe the biochemical mechanisms constituting the
machinery of the regulatory system, while others are
parameters to whose variation the gene system should
respond. In this paper, we refer to the former as the system
parameters and the latter as the control inputs.

In situations where the qualitative behavior of the regula-
tory system changes in response to shifts in the control
input, the corresponding bifurcation diagram is of impor-
tance. In particular, the proper working of the regulatory
system may depend on the locations, shapes and sizes of
the various regions of qualitative behavior. For instance,
in the cell cycle model [8] the correct spatial relationship
(in parameter space) of the transitions points is crucial for
ensuring the survival of cells. In fact, the model predicts
that "dynamically challenged" mutants with shifted bifur-
cation diagrams may suffer irrecoverably. The resulting
effects include difficulties exiting mitosis and decreases in
cell mass after each cell division. For this particular model,
the inverse bifurcation problem is to map geometric as
well as topological relationships in the bifurcation dia-
grams to conditions on the parameters. Another applica-
tion of inverse bifurcation in the cell cycle model is for the
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so-called "Pinocchio effect" involving check points. This
effect occur when the necessary conditions for safe pro-
gression to the next cell phase are not satisfied hence the
regulatory system should delay the state transition as far
as possible. Here, the inverse bifurcation problem is to
find out how the system may be constructed so that, when
triggered by the presence or absence of certain chemicals,
the range of bistability is maximized.

In the case of system parameters, they are either regulated
by other control mechanisms in the cell, or the behavior
of the system is constructed to be insensitive to variation
in these parameters [18]. Within an operating region in
the control input space, the minimal distance in the sys-
tem parameter space to bifurcation manifolds provides a
quantitative measure of the robustness of the system to
environmental perturbations. Here, the inverse bifurca-
tion problem would involve finding the parameter com-
binations so that the system bifurcation diagram is
insensitive to the unregulated parameters. Biological
applications of this class of problems include homeostasis
and rhythmic pacemakers. Again, the problem of interest
is to map some shape property of the bifurcation diagram
to conditions on the parameter space.

For inverse bifurcation problems of biological interest
such as those described above, the question arises as to
how to formulate them mathematically so that the solu-
tion can be obtained in a computationally tractable and
stable manner. Typically, in biological applications the
parameter space is of high dimension. Furthermore, in
carrying out inverse analysis, the (forward) bifurcation
analysis usually has to be applied a large number of times.
In most cases, the former condition precludes formula-
tions based on the use of multi-parameter continuation
techniques [19]. Instead, formulations based on continu-
ation along rays in parameter space are preferred. Below,
we formulate distance to bifurcation manifolds (first
introduced in [15]) in terms of a forward operator and an
l2 functional. Subsequently, we describe the sensitivity of
the minimal distance with respect to parameters by
adjoint methods.

Consider the splitting of m-dimensional parameter space
P ⊂ �m into input and system parameters, p = (pi, ps) ∈ Pi
× ps . For an ODE system, let Σ denote a bifurcation mani-
fold of interest, consisting of sets in parameter space P for
which structural stability breaks down [1]. For a given sys-
tem parameter ps, we further define Σ(ps) ≡ Σ ∩ {ps} as the
intersection of Σ with the ps-plane. In Figure 2, the geo-
metric relationship between Σ and Σ(ps) is illustrated. Let
the forward operator F :P → P be a mapping in parameter
space, taking a given point to its orthogonal projection on
Σ(ps), assumed to be well-defined. That is,

F(p) ≡ (F(p)i, F(p)s)

The notation is illustrated in Figure 1.

Using F(p), the inverse bifurcation problems examined in
this paper are mathematically formulated as:

Subject to: plow ≤ p ≤ pupp

0 ≤ c(F(p)i),  (2)

where ||·|| denotes the l2-norm and c : Pi → �k represents

k-dimensional nonlinear constraints. In the rest of this
section, we discuss adjoint sensitivity analysis of F(p),
which is important for applying gradient-based optimiza-
tion methods for solving (2) as well as for computing F(p)
iteratively. Denote the linearization of the above map at p
as F'(p). The adjoint operator F'*(p) is defined to satisfy the

following: for all δp, δ  ∈ �m,

<F'(p)δp, δ > = <δp, F'*(p)δ >,  (3)

where the notation <·, ·> denotes the l2-inner product.
Suppose <·, l> is a linearized functional of interest on P.
Given a parameter perturbation δp, the forward functional
sensitivity is then given by <F'(p)δp, l>. The same sensitiv-
ity can be obtained via the adjoint solution, ψ ≡ F'*(p)l.
From the definition of the adjoint operator (3), it follows
that:

<F'(p)δp, l> = <δp, ψ>.  (4)

That is, for all δp ∈ P the functional sensitivities can be
computed via a single linear solution for ψ rather than
repeated application of the linearized forward operator,
F'(p)δp.

For the case where the functional of interest is the l2-dis-
tance J(p) = ||F(p)i - pi||, the adjoint solution for the line-
arization J'(p)(·) is given in terms of the vector normal to
the manifold Σ. Denoting Ni and Ns as the components of
the normal vector in Pi and Ps respectively, it can be shown
that (up to sign),

= ( )( )PΣ p p ps i s, .

min
p i i

s

J p F p p( ) = ( ) −

p

p p

ψ = ± ( ) ( )1
5

N
N N

i
i s, .
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To fix the sign of ψ, the component Ni is chosen to be pi -
F(p)i. Figure 2 illustrates the components of the vector N
normal to the manifold Σ.

Thus, obtaining expressions for the adjoint vector for var-
ious bifurcations of interest reduces to the problem of
deriving the associated normal vectors, Ns. Under certain

transversality conditions, the normal vectors for several
codimension-one and higher bifurcations have been
derived [16,17]. Here we consider the generic codimen-
sion-one bifurcations, namely saddle-node and Hopf
bifurcations. Let the left and right critical eigenvectors of
fx at the given bifurcation point be denoted by w and v

respectively. That is, w and v solve the following eigen-sys-

tems for the critical eigenvalue ωcrit and its conjugate crit,

fxv = ωcrit v

w = critw.

The expressions for normal vectors are given as:

where superscript H denotes conjugate transpose and λ ≡

(wH fxxv). These expressions above prescribe the com-

ponents of the adjoint solution, thus enabling efficient
gradient calculation via (4). Now, we briefly mention
methods for computing the projection F(p). Methods of
iterative and direct type for finding the (locally) closest
bifurcation point have been derived [17]. In the current
work we use the former approach, based on using the
component of the normal vector in the input plane, Ni.

Provided certain conditions on the principal curvatures of

Σ(ps) are met, geometric convergence is assured. The algo-

ω

fx
T ω
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Forward map in the input plane, PiFigure 1
Forward map in the input plane, Pi.
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Illustration of normal vector N and components Ni, NsFigure 2
Illustration of normal vector N and components Ni, Ns.
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rithm is discussed in Section 3. Figure 3 illustrates the
method in a simple example, producing a sequence of

iterates ( i) converging to the point F(p)i that is closest to

a (non-convex) neighboring region with respect to pi.

Finally, we mention that the minimal distance functional
can be used to model many other problems of interest.
For instance, it can serve as an estimate of the separation
between a reference manifold Σref and a given region of
qualitative behavior, or the size of the region of a qualita-
tive behavior via the maximum radius of the inscribed
sphere.

3 Algorithm and software implementation
Here we give an outline of the algorithm for general
inverse bifurcation problems. The main ingredients are
applications of the projection operator F(p), as well as the
adjoint, F'*(p). The computation of the former is denoted
by the routine APPLYF (see Figure 4). Each time APPLYF

is called, corrector steps (using, for instance, Newton's
method) have to be carried out on the previously com-
puted xinit to find the initial solution for the current value
of ps. Once the corrected solution xcorr is computed, the
iterative procedure LOCMINDIST (see Figure 5) is called
to compute the nearest point on the bifurcation manifold
of interest. This procedure is based on a series of one-
parameter continuations and gradient calculations
according to (6). The inputs include the following: v the
initial search direction in parameter space; εproj the relative
tolerance on the iterative proceure. In general, several
search directions (denoted by V = {v1,�, vmax}) have to be
used to approximate the globally closest point. However,
for the examples shown in the paper the initial search
space V is only 1 dimensional. Once F(p) and the corre-
sponding solution are obtained, F'*(p) is then computed.
The derivative information, together with constraints
(plow, pupp, c(p)) and Hessian approximation (HessA) are

p

Demonstration of iterative procedure for computing F(p)Figure 3
Demonstration of iterative procedure for computing F(p).
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then used to compute an SQP step and update the Hes-
sian. Figure 6 describes the inverse bifurcation algorithm.

Our Inverse Bifurcation Toolbox is an implementation of
the above described algorithm. It combines the capability
of several packages: the MATCONT package [20] for per-
forming the underlying one-parameter continuations, the

Algorithm LOCMlNDlSTFigure 5
Algorithm LOCMlNDlST.

Algorithm APPLYFFigure 4
Algorithm APPLYF.
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MATLAB Optimization Toolbox [21] for performing gra-
dient-based constrained optimization, the MathSBML
package [22] for reading in biological models in the SBML
format and finally the Mathematica Symbolic Toolbox for
MATLAB [23] for communications. The combination of
MATLAB and Mathematica has the advantage of allowing
building on existing freely-available software.

After the SBML model is read in via MathSBML, the vector
fields are differentiated symbolically to obtain expres-
sions for fx, fp, fxp and fxx. Subsequently, they are numeri-
cally evaluated when called by MATCONT.
Reparametrization of parameters is done automatically to
allow continuation in arbitrary directions. Presently, the
toolbox is able to handle bifurcations of saddle-node and

Hopf type. Augmentation to include bifurcations of limit
cycles is currently underway.

Given the limitations of the current implementation, our
software is suitable for handling problems involving tens
of variables and parameters but possibly not suited for
problem dimensionality on the order of hundreds or
higher. Further algorithm development is needed to sig-
nificantly upscale the method. In addition, in high
dimensional applications instabilities may appear and
hence appropriate regularization techniques need to be
developed (e.g., stopping rules in the case of iterative
methods).

Algorithm INVERSE BIFURCATIONFigure 6
Algorithm INVERSE BIFURCATION.
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4 Applications
4.1 Finding distance to oscillation in a 4 gene model
To understand design principles underlying biological
systems, simple oscillatory and switch-like systems have
been constructed experimentally. Several systems based
on E. coli [24,25] have been successfully demonstrated.
Recently, components of the Lac and Ntr systems have
been used to construct a genetic clock that upon change in
connectivity, exhibits switch behavior [26]. After ignoring
the dynamics of the read-out gene, the system of three
equations for the concentrations of mRNA (x1, x3, x5) and
proteins (x2, x4, x6) is given as,

where βi are rate constants. The rates of transcription are
represented by the following tri-phasic functions,

where gjk are kinetic-order parameters, typically less than
4.

Given a stable, steady solution for a gene system with a set
of nominal parameters, a relevant engineering question is
how to construct a genetic oscillator. For the current sys-
tem, the analytical solutions for the bifurcation manifolds
are available via the Routh-Hurwitz stability criterion
([26], supplementary data). However, such analysis can-
not be easily carried out for more complex models.
Instead, computational methods have to be used.

Suppose the stable system has rate parameter β1 = β3 =
22.2, β2 = β4 = 1.39, kinetic-order parameters g32 = -2, g12
= g14 = g54 = 1. If in practice only the rate parameters βi can
be varied, the question is how best to construct an oscilla-
tory system. The bifurcation diagram for the model is
shown in Figure 7, where it can be seen that for the nom-
inal values of gjk the system is stable and far away from the

line of Hopf bifurcation. The inverse bifurcation question
is: do there exist parameters βi such that the system is
oscillatory? We consider the problem with the following
parameter constraints:

0.1 ≤ β1, β3 ≤ 25

0.1 ≤ β2, β4 ≤ 4.

By minimizing the distance from the nominal parameter
point (g12 = 1, g32g14 = -2) to the Hopf bifurcation line, the
system can be made to lie on the boundary of the stable
regime; see Figure 8. Table 1 shows the iteration counts
required to obtain the result, using Sequential Quadratic
Programming (SQP) with line-search [27]. Owing to the
use of line-search, each optimization iteration entails a
number of functional evaluations, this in turn requiring a
number of one-parameter continuation iterations to find
the (locally) closest point on Σ(ps). The optimality toler-
ance on the objective is set as 10-3 relative to its initial
value and the relative parameter tolerance for approximat-
ing F(p) is set to 10-4. Clearly, the number of one-param-
eter continuations is significantly higher than the
optimization iterations. Thus, for high dimensional
examples it is important that the former can be carried out
efficiently.

4.2 Maximizing regime of oscillations in repressilator 
system
Motivated by biological applications such as increasing
the robustness of rhythmic pacemakers, we consider max-
imizing the region of oscillations with respect to a given
operating point. We utilize a case of the generalized
repressilator [7] as our test system.

After non-dimensionalizing, an ODE system for the pro-
tein and RNA concentrations xi and yi is obtained, with the
following dimensionless parameters: αi, βi are the ratios of
degradation rates, δi represents the leakiness of the gene
transcription, hi the Hill-coefficient reflecting the degree of
cooperativity of gene transcription,

In this example, we take n = 3 and examine the symmetric
case, i.e., αi = α, β = β, etc. Analysis shows that for ranges
of parameters α and β, the system can exhibit oscillations
or be in a stable, steady-state [7]. Thus, we take pi = (α, β)
as the input parameters and seek values of ps = (δ, h)
within the constraint set,

(10-4, 0) ≤ (δ, h) ≤ (10-1, 2)

dx

dt
f x
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x x
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so as to maximize the minimal distance to a Hopf bifurca-
tion with respect to a reference point (α = 102.5, β = 100).
Figure 9 shows the initial bifurcation diagram and the
computed minimal distance from the reference point. The
result of the inverse bifurcation analysis shows that the
optimum solution is found at (δ, h) = (10-4, 2); thus, the
inequality constraints are active equality constraints.
Moreover, the signs of the Lagrange multipliers for the
inequality constraints show that the (local) optimum dis-
tance to the Hopf bifurcation manifold increases if the
upper bound hupp is increased and/or the lower bound
δlow is decreased. Figure 10 shows the bifurcation diagram
with the optimized parameters.

Table 2 shows the iteration counts required to obtain the
result. The tolerances for optimization are the same as
those of Section 4.1.

4.3 Engineering bistable switch in G1/S transition
We consider the reverse engineering of check points in
mammalian cell phase transition. In particular, we use a 9
state, 40 parameter differential equation model [28]. In
the publication describing the model, parameter scanning
is done to find out parameter values that achieve certain
behaviors, such as changing the threshold for the onset of
synthesis (S) phase from the G1 state and conditions
ensuring irreversibility of the gene switch. Using our
inverse bifurcation analysis, specifying a desired behavior
on the transition points gives rise to conditions on the
parameters in a more systematic and efficient manner.

Figure 11 shows the bifurcation diagram for the regulatory
module of the mammalian G1/S transition. The bifurca-
tion parameter is the strength of mitogenic stimulation,
Fm . The quantity of primary interest is the level of E2F1,
which is a transcription factor targeting genes underlying

Initial bifurcation diagram for 4 gene model: β1 = β3 = 222, β2 = β4 = 1.39Figure 7
Initial bifurcation diagram for 4 gene model: β1 = β3 = 222, β2 = β4 = 1.39.
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cell cycle progression. For sufficiently low level of Fm, the
level of E2F1 stays at a constant low value. At a critical
value of Fm a transcritical point is reached, above which
the level of E2F1 starts to increase with Fm . As the level of
Fm increases further, a saddle-node (SN1) is reached and
the level of E2F1 undergoes a discontinuous jump
upwards, thereby triggering the S phase of the cell cycle.

4.3.1 Example 1: engineer irreversibility
First, we mention a number of main species and their
interactions. The regulatory system consists of a core dou-
ble inhibitor-activator module as well as several positive-

feedback loops. The transcription factor E2F1 activates
itself as well as pRB, a tumor suppressor. In turn, pRB
inhibits itself as well as E2F1. The following equations
describe this core module:

d

dt
k

K

J

J pRB

d

dt

m
[ ]

[ ]
[ ] [ ]

[ ],

[

pRB
E F

E F

pRB

E F

pRB

=
+ +

−

1
1

11

11

2 1
2 1

2 1

φ
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[ ]

[ ] [ ]

[ ]

= + +
+ +

−

( )
k k

a

K

J

Jp
m

2

2 2

2
2 2

12

12

2 1

2 1

2 1

2 1

7
E F

E F pRB

E FE Fφ

Table 1: Iteration summary

Optim. iter. Func. eval. One-param contin.

4 gene system 7 15 60

Optimized bifurcation diagram for 4 gene model: β1 = 22.186, β2 = 4, β3 = 22.145, β4 = 0.1Figure 8
Optimized bifurcation diagram for 4 gene model: β1 = 22.186, β2 = 4, β3 = 22.145, β4 = 0.1.
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Another important collection of species is AP-1, which is
used to denote a family of transcription factors that medi-
ate the mitogenic signal Fm . The family AP-1 is also acti-
vated by E2F1, with feedback strength k25. The dynamics
for the concentration of the family [AP-1] is modelled as:

In the first example, we consider the construction of an
irreversible gene switch via parameter changes. It has been
demonstrated [28] that for some value of k25 in (8), the
G1/S transition becomes irreversible. That is, if Fm is
increased beyond a certain point, a subsequent decrease
to zero will not lead to a G0 state with a low level of E2F1.

Geometrically, the inverse problem is to find the value of
k25 such that the x-abscissa of the upper saddle node (SN2)
is as close to zero as possible. As inequality constraints, we
take 0.1 ≤ k25 ≤ 1.5. The result of the inverse analysis
shows that the feedback strength should increase from its
initial value of k25 = 0.9 to k25 = 1.099, resulting in a
change of bifurcation diagram shown in Figure 12. Row 1
of Table 3 shows the number of optimization iterations as
well as the number of functional evaluations (which in
this case equals the number of one-parameter continua-
tions) required to reach a tolerance of 10-3 on the function
value.

4.3.2 Example 2: engineer irreversibility, fixed G1/S transition
In this example, we consider an extension of the previous
problem. Here, we would like to engineer an irreversible
switch with the additional constraint that the x-abscissa of

d
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Initial bifurcation diagram for symmetric repressilator: δ = 10-3, h = 1.5Figure 9
Initial bifurcation diagram for symmetric repressilator: δ = 10-3, h = 1.5.
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the G1/S transition point SN1 should be fixed at the value
of the nominal system. In addition to allowing 0.1 ≤ k25 ≤
1.5 as before, we also modify the stability of E2F1 and AP-
1. That is, we relax the values of φE2F1 and φAP-1 in (7) and
(8) from from their fixed nominal values 0.1 and 0.01
respectively, to allow searching within the ranges,

0.08 ≤ φE2F1 ≤ 0.12

0.008 ≤ φAP-1 ≤ 0.012.

Mathematically, the inverse problem is formulated as an
nonlinear optimization problem with equality constraint
on the x-abscissa of the G1/S point, SN1. The bifurcation
diagram corresponding to the solution (k25 = 1.182, φE2F1
= 0.0992, φAP-1 = 0.0109) is given in Figure 13. Row 2 of
Table 3 summarizes the number of iterations required.

5 Conclusion
We propose an inverse problems methodology to address
a class of problems arising in the study and design of gene
systems. The methodology is based on the (inverse) map
from the space of bifurcation diagrams to the space of bio-

Table 2: Iteration summary

Optim. iter. Func. eval. One-param contin.

Symmetric repressilator 2 5 48

Optimized bifurcation diagram for symmetric repressilator: δ = 10-4, h = 2Figure 10
Optimized bifurcation diagram for symmetric repressilator: δ = 10-4, h = 2.
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Bifurcation diagram of cell phase transition.
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Example 1: initial and optimized gene switches.
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chemical parameters. Within this general inverse bifurca-
tion framework, we show that many questions of
biological interest may be formulated as optimization
problems involving minimal distances to bifurcation
manifolds. Adjoint sensitivity analysis is carried out to
allow for efficient solution using gradient-based optimi-
zation methods.

Several general questions remain for the methodology:
what biological problems can be formulated in terms of
geometric properties of the bifurcation diagrams? Given
desired geometric properties for bifurcation diagrams,
how best can the problem be formulated mathematically
to allow for tractable solution? Finally, we remark that the
development of appropriate numerical methods, novel

Table 3: Iteration summary

Optim. iter. Func. eval.

Example 1: irreversibility 6 14

Example 2: irreversibility, fixed G1/S 9 22

Example 2: initial and optimized gene switchesFigure 13
Example 2: initial and optimized gene switches.
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computational strategies and regularization techniques
are necessary to allow for the upscaling of the current
computational tool to high dimensional biological appli-
cations.
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